JavaShuo
栏目
标签
SLAM——李群和李代数
时间 2020-12-30
原文
原文链接
旋转矩阵和变换矩阵, 它们对加法是不封闭的。换句话说,对于任意两个旋转矩阵 R1; R2,它们按照矩阵加法的定义,和不再是一个旋转矩阵。这种只有一个运算的集合,我们把它叫做群。 群(Group)是一种集合加上一种运算的代数结构。李群是指具有连续(光滑)性质的群。 每个李群都有与之对应的李代数。李代数描述了李群的局部性质。 李代数so(3) 实际上就是由所谓的旋转向量组成的空间,而指数映射即罗德里格
>>阅读原文<<
相关文章
1.
SLAM基础之李群和李代数
2.
slam系列-李群李代数
3.
视觉SLAM —— 李群与李代数
4.
李群和李代数
5.
李群李代数
6.
视觉SLAM十四讲_3-李群和李代数
7.
Visual SLAM 笔记——李群和李代数详解
8.
李群与李代数
9.
3. 李群与李代数
10.
2.李群和李代数(笔记)
更多相关文章...
•
Swarm 集群管理
-
Docker教程
•
ASP.NET Razor - C# 和 VB 代码语法
-
ASP.NET 教程
•
IntelliJ IDEA 代码格式化配置和快捷键
•
TiDB 在摩拜单车在线数据业务的应用和实践
相关标签/搜索
李群
李代数
李宁
李娜
李安
行李
老李
李俊
李子
XLink 和 XPointer 教程
MyBatis教程
SQLite教程
代码格式化
数据传输
数据库
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
shell编译问题
2.
mipsel 编译问题
3.
添加xml
4.
直方图均衡化
5.
FL Studio钢琴卷轴之画笔工具
6.
中小企业为什么要用CRM系统
7.
Github | MelGAN 超快音频合成源码开源
8.
VUE生产环境打包build
9.
RVAS(rare variant association study)知识
10.
不看后悔系列!DTS 控制台入门一本通(附网盘链接)
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
SLAM基础之李群和李代数
2.
slam系列-李群李代数
3.
视觉SLAM —— 李群与李代数
4.
李群和李代数
5.
李群李代数
6.
视觉SLAM十四讲_3-李群和李代数
7.
Visual SLAM 笔记——李群和李代数详解
8.
李群与李代数
9.
3. 李群与李代数
10.
2.李群和李代数(笔记)
>>更多相关文章<<