机器学习逻辑回归:原理推导

前言 到现在为止,我们通过大约1周的时间初步对机器学习是怎么一回事算是有一些基本的理解了,从最基本的线性回归入手,讨论了如何在拿到一堆数据时,先进行数据预处理(暂时未详细阐述,会在以后某个时间段详细论述),然后再假设模型(model)为线性模型,再带入数据通过直接求解法和梯度下降法求解模型的各个特征的权重参数,最后用脊回归和套索回归优化了普通最小二乘法回归,对L1和L2正则化有了进一步地认识。我们
相关文章
相关标签/搜索