静态,区间求众数。html
还记得分块1就提到的关于块的大小有时要经过计算么??在这里就获得了体现!c++
为了方便起见,咱们设把数列分红K块~spa
这道题很值得思考。code
先离散化~ 而后记录位置~htm
咱们能够考虑,对于L ~ R之间的众数只有多是如下三种状况:blog
第三条能够预处理出。get
而后对于每次询问,直接枚举上述三种状况便可。it
#include<bits/stdc++.h> using namespace std; #define MAXN 50005 int n, m, T; int a[MAXN], b[MAXN], c[MAXN]; int d, f[2000][2000]; int s[MAXN]; vector<int> p[MAXN]; int Count( int l, int r, int x ){ return upper_bound( p[x].begin(), p[x].end(), r ) - lower_bound( p[x].begin(), p[x].end(), l ); } int Get( int l, int r ){ if ( b[l] == b[r] ){ int ans1(0), ans2(0); for ( int i = l; i <= r; ++i ){ int t(Count( l, r, a[i] )); if ( t > ans2 ) ans1 = a[i], ans2 = t; if ( t == ans2 ) ans1 = min( ans1, a[i] ); } return ans1; } int ans1(f[b[l] + 1][b[r] - 1]), ans2(Count( l, r, ans1 )); for ( int i = l; b[l] == b[i]; ++i ){ int t(Count( l, r, a[i] )); if ( t == ans2 ) ans1 = min( ans1, a[i] ); if ( t > ans2 ) ans1 = a[i], ans2 = t; } for ( int i = r; b[r] == b[i]; --i ){ int t(Count( l, r, a[i] )); if ( t == ans2 ) ans1 = min( ans1, a[i] ); if ( t > ans2 ) ans1 = a[i], ans2 = t; } return ans1; } int main(){ scanf( "%d", &n ); d = 0; while( ( 1 << d ) <= n ) d++; d--; d = (int)( n / sqrt( 2 * n * d ) ); for ( int i = 1; i <= n; ++i ){ scanf( "%d", &a[i] ); c[i] = a[i]; b[i] = ( i - 1 ) / d + 1; } sort( c + 1, c + n + 1 );//离散化 m = unique( c + 1, c + n + 1 ) - c - 1; for ( int i = 1; i <= n; ++i ) a[i] = lower_bound( c + 1, c + m + 1, a[i] ) - c; for ( int i = 1; i <= n; ++i ) p[a[i]].push_back(i);//每一个元素都记录位置 for ( int i = 1; i <= b[n]; ++i ){ memset( s, 0, sizeof s ); int ans1(0), ans2(0); for ( int j = ( i - 1 ) * d + 1; j <= n; ++j ){ s[a[j]]++; if ( s[a[j]] == ans2 ) ans1 = min( ans1, a[j] ); if ( s[a[j]] > ans2 ) ans1 = a[j], ans2 = s[a[j]]; if ( b[j + 1] != b[j] ) f[i][b[j]] = ans1; } } int x(0); for ( int T = 1; T <= n; ++T ){ int l, r; scanf( "%d%d", &l, &r ); int t(min( l, r )); r = max( l, r ); l = t; printf( "%d\n", x = c[Get( l, r )] ); } return 0; }
分块大法入门1~9就这么结束惹,但分块这个博大精深的暴力远远不止这些, 还有待你们去探索(((((ી(・◡・)ʃ)))))入门
数列分块入门1class
数列分块入门9 <-