区间加法,区间求和。html
这题。。。也与分块1一模一样。。。数组
当有修改时,对于完整的块,直接维护一个数组v记录整个块加过的数(每块共同的加数)与s记录每一个块的和(不算共同加数),不完整的就直接暴力在原数组a上直接加,而且别忘了给s也加上。询问时,对于不完整的块,直接暴力加(别忘了共同加数),完整的块对于每一个区间ans加上 (区间和 + 共同加数 * 大小)就能够了。spa
#include<cstdio> #include<cmath> using namespace std; #define MAXN 50005 #define LL long long int n, t, m; LL a[MAXN], p[MAXN], v[500], s[500]; LL opt, l, r, c; void Add( int l, int r, int c ){ if ( p[l] == p[r] ){ for ( int i = l; i <= r; ++i ) a[i] += c, s[p[i]] += c; return; } for ( int i = l; p[l] == p[i]; ++i ) a[i] += c, s[p[i]] += c; for ( int i = r; p[r] == p[i]; --i ) a[i] += c, s[p[i]] += c; for ( int i = p[l] + 1; i < p[r]; ++i ) v[i] += c; } LL query( int l, int r, LL c ){ if ( p[l] == p[r] ){ LL ans(0); for ( int i = l; i <= r; ++i ) ans += ( a[i] + v[p[i]] ) % c, ans %= c; return ans; } int ans(0); for ( int i = l; p[i] == p[l]; ++i ) ans += ( a[i] + v[p[i]] ) % c, ans %= c; for ( int i = r; p[i] == p[r]; --i ) ans += ( a[i] + v[p[i]] ) % c, ans %= c; for ( int i = p[l] + 1; i < p[r]; ++i ) ans += ( s[i] + v[i] * m ) % c, ans %= c; return ans % c; } int main(){ scanf( "%d", &n ); m = (int)sqrt(n); for ( int i = 1; i <= n; ++i ) scanf( "%lld", &a[i] ), p[i] = ( i - 1 ) / m + 1, s[p[i]] += a[i]; for ( int i = 1; i <= n; ++i ){ scanf( "%d%lld%lld%lld", &opt, &l, &r, &c ); if ( opt ) printf( "%lld\n", query( l, r, c + 1 ) ); else Add( l, r, c ); } }
数列分块入门1code
数列分块入门2htm
数列分块入门3blog
数列分块入门4 <-get
数列分块入门5io
数列分块入门6入门
数列分块入门7class