区间加法,区间询问小于一个数的个数。html
对于每一个块,除原数组以外用一个vector来有序地存储全部数。当区间加时,对于每一个完整块维护共同加数,对于不完整的块直接暴力加上再从新排序。当询问时,对于每一个完整块在vector中二分,对于不完整的,直接暴力计数。算法
#include<cstdio> #include<vector> #include<algorithm> #include<cmath> using namespace std; #define MAXN 50005 int n, m, a[MAXN], p[MAXN], b[500], mm; vector<int> v[500]; int opt, l, r, c; int EF( vector<int> vec, int x ){//自力更生,手打二分万岁QAQ int l, r, mid, ans(-1); l = 0; r = vec.size() - 1; while( l <= r ){ mid = ( l + r ) >> 1; if ( vec[mid] < x ){ ans = mid; l = mid + 1; } else r = mid - 1; } return ans + 1; } int query( int l, int r, int c ){ int ans(0); if ( p[l] == p[r] ){ for ( int i = l; i <= r; ++i ) if ( a[i] + b[p[l]] < c ) ans++; return ans; } for ( int i = l; p[i] == p[l]; ++i ) if ( a[i] + b[p[i]] < c ) ans++; for ( int i = r; p[i] == p[r]; --i ) if ( a[i] + b[p[i]] < c ) ans++; for ( int i = p[l] + 1; i <= p[r] - 1; ++i ) ans += EF( v[i], c - b[i] ); return ans; } void re( int x ){ v[x].clear(); int be(( x - 1 ) * m + 1); for ( int i = be; p[i] == p[be]; i++ ) v[x].push_back( a[i] ); sort( v[x].begin(), v[x].end() ); } void Add( int l, int r, int c ){ if ( p[l] == p[r] ){ for ( int i = l; i <= r; ++i ) a[i] += c; re( p[l] ); return; } for ( int i = l; p[i] == p[l]; ++i ) a[i] += c; re(p[l]);//重排。实际上能够归并排序,或者要用时再临时排序,这里偷了懒QAQ for ( int i = r; p[i] == p[r]; --i ) a[i] += c; re(p[r]); for ( int i = p[l] + 1; i < p[r]; ++i ) b[i] += c; } int main(){ scanf( "%d", &n ); m = (int)sqrt(n); for ( int i = 1; i <= n; ++i ) p[i] = ( i - 1 ) / m + 1, mm = p[i]; for ( int i = 1; i <= n; ++i ) scanf( "%d", &a[i] ); for ( int i = 1; i <= n; ++i ) v[p[i]].push_back(a[i]); for ( int i = 1; i <= mm; ++i ) sort( v[i].begin(), v[i].end() ); for ( int i = 1; i <= n; ++i ){ scanf( "%d%d%d%d", &opt, &l, &r, &c ); if ( opt ) printf( "%d\n", query( l, r, c * c ) ); else Add( l, r, c ); } return 0; }
比起其余算法老长老长的代码,分块算法的灵活在本题中获得体现QAQ数组
数列分块入门1spa
数列分块入门2 <-code
数列分块入门3htm
数列分块入门4blog
数列分块入门5排序
数列分块入门6get
数列分块入门7it