分类问题的模型评估指标总结

在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四中不同的组合,构成混淆矩阵(可适用于多分类),通常有这几种主要模型评估指标:精确率(查的准)、召回率(查的全对正样本的区分能力)、F1值(反映模型的稳健性)等。 TP:真正例(true positive) FP:伪正例(false positive) TN:真反例(true nega
相关文章
相关标签/搜索