什么是迁移学习?它都用在深度学习的哪些场景上?

  迁移学习是机器学习方法之一,它可以把为一个任务开发的模型重新用在另一个不同的任务中,并作为另一个任务模型的起点。 这在深度学习中是一种常见的方法。由于在计算机视觉和自然语言处理上,开发神经网络模型需要大量的计算和时间资源,技术跨度也比较大。所以,预训练的模型通常会被重新用作计算机视觉和自然语言处理任务的起点。 这篇文章会发现告诉你,如何使用迁移学习来加速训练过程和提高深度学习模型的性能,以及解
相关文章
相关标签/搜索