统计学习方法(第2章)感知机 学习笔记

第2章 感知机 感知机是二类分类的线性分类模型,其输入为实例的特征向量,感知机对应于输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于判别模型。导入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型。感知机学习算法分为原始形式和对偶形式,是神经网络和支持向量机的基础。 1.感知机模型   感知机定义:     假设输入空间(特征空间)是X,输出空间是Y,Y的取值为+
相关文章
相关标签/搜索