rovio是一个紧耦合,基于图像块的滤波实现的VIO。git
他的优势是:计算量小(EKF,稀疏的图像块),可是对应不一样的设备须要调参数,参数对精度很重要。没有闭环,没有mapping thread。常常存在偏差会残留到下一时刻。github
我试了一些设备,要是精度在几十厘米,设备运动不快的,通常摄像头加通常imu,不是硬件同步就是正常的rostopic 发布的时间,也能达到。算法
代码主要分为EKF实现的部分,和算法相关的部分,EKF是做者本身写的一个框架。先分析EKF代码app
FilterBase.hpp
框架
template<typename Meas> class MeasurementTimeline{ typedef Meas mtMeas; //imu测量的数据存在map中,至关于一个buffer,key是时间,value 是加速度或者角速度或者图像金字塔 std::map<double,mtMeas> measMap_; void addMeas(const mtMeas& meas,const double &t); }
EKF的整个流程框架ide
template<typename Prediction,typename... Updates> class FilterBase: public PropertyHandler{ //imu和图像的两个MeasurementTimeline MeasurementTimeline<typename mtPrediction::mtMeas> predictionTimeline_; std::tuple<MeasurementTimeline<typename Updates::mtMeas>...> updateTimelineTuple_; //加入imu测量值 void addPredictionMeas(const typename Prediction::mtMeas& meas, double t){ if(t<= safeWarningTime_) { std::cout << "[FilterBase::addPredictionMeas] Warning: included measurements at time " << t << " before safeTime " << safeWarningTime_ << std::endl; } if(t<= frontWarningTime_) gotFrontWarning_ = true; predictionTimeline_.addMeas(meas,t); } //图像的MeasurementTimeline template<int i> void addUpdateMeas(const typename std::tuple_element<i,decltype(mUpdates_)>::type::mtMeas& meas, double t){ if(t<= safeWarningTime_) { std::cout << "[FilterBase::addUpdateMeas] Warning: included measurements at time " << t << " before safeTime " << safeWarningTime_ << std::endl; } if(t<= frontWarningTime_) gotFrontWarning_ = true; std::get<i>(updateTimelineTuple_).addMeas(meas,t); } //根据传入时间进行EKF的更新 void updateSafe(const double *maxTime = nullptr){ //根据最新的imu测量时间,获得最近的图像测量的时间,nextSafeTime返回的是最新的图像测量时间 bool gotSafeTime = getSafeTime(nextSafeTime); update(safe_,nextSafeTime); //清楚safetime以前的数据,可是至少留下一个测量量 clean(safe_.t_); } void update(mtFilterState& filterState,const double& tEnd){ while(filterState.t_ < tEnd){ tNext = tEnd; //要是上一次更新以后,没有新的图像来到,就不要更新了 if(!getNextUpdate(filterState.t_,tNext) && updateToUpdateMeasOnly_){ break; // Don't go further if there is no update available } int r = 0; //参数usePredictionMerge_是否是设置,对应的是EKF中的预测方程的f(x)设置的不同,看代码就知道 if(filterState.usePredictionMerge_){ r = mPrediction_.predictMerged(filterState,tNext,predictionTimeline_.measMap_); if(r!=0) std::cout << "Error during predictMerged: " << r << std::endl; logCountMerPre_++; } else { while(filterState.t_ < tNext && (predictionTimeline_.itMeas_ = predictionTimeline_.measMap_.upper_bound(filterState.t_)) != predictionTimeline_.measMap_.end()){ r = mPrediction_.performPrediction(filterState,predictionTimeline_.itMeas_->second,std::min(predictionTimeline_.itMeas_->first,tNext)-filterState.t_); if(r!=0) std::cout << "Error during performPrediction: " << r << std::endl; logCountRegPre_++; } } // imu和图像的时间戳不是对齐的,存在误差,这一段时间的imu也要作EKF预测 if(filterState.t_ < tNext){ r = mPrediction_.performPrediction(filterState,tNext-filterState.t_); if(r!=0) std::cout << "Error during performPrediction: " << r << std::endl; logCountBadPre_++; } // 图像的更新 doAvailableUpdates(filterState,tNext); } } }
Prediction.hpp
函数
int predictMerged(mtFilterState& filterState, double tTarget,const std::map<double, mtMeas>& measMap) { switch (filterState.mode_) { case ModeEKF: return predictMergedEKF(filterState, tTarget, measMap); case ModeUKF: return predictMergedUKF(filterState, tTarget, measMap); case ModeIEKF: return predictMergedEKF(filterState, tTarget, measMap); default: return predictMergedEKF(filterState, tTarget, measMap); } } virtual int predictMergedEKF(mtFilterState& filterState,const double tTarget, const std::map<double, mtMeas>& measMap) { const typename std::map<double, mtMeas>::const_iterator itMeasStart = measMap.upper_bound(filterState.t_); if (itMeasStart == measMap.end()) return 0; typename std::map<double, mtMeas>::const_iterator itMeasEnd = measMap.lower_bound(tTarget); if (itMeasEnd != measMap.end()) ++itMeasEnd; double dT = std::min(std::prev(itMeasEnd)->first, tTarget) - filterState.t_; if (dT <= 0) return 0; // Compute mean Measurement mtMeas meanMeas; typename mtMeas::mtDifVec vec; typename mtMeas::mtDifVec difVec; vec.setZero(); double t = itMeasStart->first; for (typename std::map<double, mtMeas>::const_iterator itMeas = next(itMeasStart); itMeas != itMeasEnd; itMeas++) { itMeasStart->second.boxMinus(itMeas->second, difVec); //这个是应该是减的 vec = vec - difVec * (std::min(itMeas->first, tTarget) - t); t = std::min(itMeas->first, tTarget); } vec = vec / dT; //获得这段时间的imu平均测量 itMeasStart->second.boxPlus(vec, meanMeas); preProcess(filterState, meanMeas, dT); meas_ = meanMeas; //雅可比矩阵的求解 this->jacPreviousState(filterState.F_, filterState.state_, dT); this->jacNoise(filterState.G_, filterState.state_, dT); // Works for time continuous parametrization of noise for (typename std::map<double, mtMeas>::const_iterator itMeas = itMeasStart; itMeas != itMeasEnd; itMeas++) { meas_ = itMeas->second; this->evalPredictionShort(filterState.state_, filterState.state_, std::min(itMeas->first, tTarget) - filterState.t_); filterState.t_ = std::min(itMeas->first, tTarget); } filterState.cov_ = filterState.F_ * filterState.cov_ * filterState.F_.transpose() + filterState.G_ * prenoiP_ * filterState.G_.transpose(); filterState.state_.fix(); enforceSymmetry(filterState.cov_); filterState.t_ = std::min(std::prev(itMeasEnd)->first, tTarget); postProcess(filterState, meanMeas, dT); return 0; }
update.hpp
post
int performUpdateEKF(mtFilterState& filterState, const mtMeas& meas) { meas_ = meas; if (!useSpecialLinearizationPoint_) { this->jacState(H_, filterState.state_); Hlin_ = H_; this->jacNoise(Hn_, filterState.state_); this->evalInnovationShort(y_, filterState.state_); } else { filterState.state_.boxPlus(filterState.difVecLin_, linState_); this->jacState(H_, linState_); if (useImprovedJacobian_) { filterState.state_.boxMinusJac(linState_, boxMinusJac_); Hlin_ = H_ * boxMinusJac_; } else { Hlin_ = H_; } this->jacNoise(Hn_, linState_); this->evalInnovationShort(y_, linState_); } if (isCoupled) { C_ = filterState.G_ * preupdnoiP_ * Hn_.transpose(); Py_ = Hlin_ * filterState.cov_ * Hlin_.transpose() + Hn_ * updnoiP_ * Hn_.transpose() + Hlin_ * C_ + C_.transpose() * Hlin_.transpose(); } else { Py_ = Hlin_ * filterState.cov_ * Hlin_.transpose() + Hn_ * updnoiP_ * Hn_.transpose(); } y_.boxMinus(yIdentity_, innVector_); // Outlier detection // TODO: adapt for special linearization point //根据方差和residual的乘积是否超多阀值判断outlier outlierDetection_.doOutlierDetection(innVector_, Py_, Hlin_); Pyinv_.setIdentity(); Py_.llt().solveInPlace(Pyinv_); if(outlierDetection_.isOutlier(0)){ LOG(INFO) << "innovation vector: " << innVector_(0) << " , " << innVector_(1); // LOG(INFO) << "covariance :\n " << Py_.block(0,0,2,2); } // Kalman Update if (isCoupled) { K_ = (filterState.cov_ * Hlin_.transpose() + C_) * Pyinv_; } else { K_ = filterState.cov_ * Hlin_.transpose() * Pyinv_; } filterState.cov_ = filterState.cov_ - K_ * Py_ * K_.transpose(); if (!useSpecialLinearizationPoint_) { updateVec_ = -K_ * innVector_; } else { filterState.state_.boxMinus(linState_, difVecLinInv_); updateVec_ = -K_ * (innVector_ + H_ * difVecLinInv_); // includes correction for offseted linearization point, dif must be recomputed (a-b != (-(b-a))) } filterState.state_.boxPlus(updateVec_, filterState.state_); // LOG(INFO) << "updateVec pos vel:\n " << updateVec_.block(0,0,6,1).transpose(); return 0; }
State.hpp
优化
旋转量使用四元数表示是4个自由度,可是旋转只要3个自由度表示,要用李代数表示。this
这个是bearing vector的参数表示方式。在tangent space 中表示,这部分我只理解部分。具体的能够参考做者的博士论文,最后一章。
class NormalVectorElement: public ElementBase<NormalVectorElement,NormalVectorElement,2>{ public: QPD q_; NormalVectorElement(const V3D& vec): e_x(1,0,0), e_y(0,1,0), e_z(0,0,1){ setFromVector(vec); //就是vec和e_z之间的旋转变换 } void setFromVector(V3D vec){ const double d = vec.norm(); if(d > 1e-6){ vec = vec/d; q_ = q_.exponentialMap(getRotationFromTwoNormals(e_z,vec,e_x)); } else { q_.setIdentity(); } } // z轴跟bearing vector之间的旋转变换 static V3D getRotationFromTwoNormals(const V3D& a, const V3D& b, const V3D& a_perp) { const V3D cross = a.cross(b); const double crossNorm = cross.norm(); const double c = a.dot(b); const double angle = std::acos(c); if (crossNorm < 1e-6) { //0度 if (c > 0) { return cross; } else {//180 度 return a_perp * M_PI; } } else {//\theta a 旋转轴+旋转角的表示 return cross * (angle / crossNorm); } } V3D getVec() const{ return q_.rotate(e_z); } V3D getPerp1() const{ return q_.rotate(e_x); } V3D getPerp2() const{ return q_.rotate(e_y); } Eigen::Matrix<double,3,2> getN() const { Eigen::Matrix<double,3,2> M; M.col(0) = getPerp1(); M.col(1) = getPerp2(); return M; } }
博士论文的最后一章对算法的bearing vector的公式详细的推导了。
这部分主要是算法的部分。
RovioNode.hpp
template<typename FILTER> class RovioNode{ struct FilterInitializationState { FilterInitializationState() : WrWM_(V3D::Zero()), //使用加速度进行初始化的方向肯定 state_(State::WaitForInitUsingAccel) {} }; void imuCallback(const sensor_msgs::Imu::ConstPtr& imu_msg){ std::lock_guard<std::mutex> lock(m_filter_); predictionMeas_.template get<mtPredictionMeas::_acc>() = Eigen::Vector3d(imu_msg->linear_acceleration.x,imu_msg->linear_acceleration.y,imu_msg->linear_acceleration.z); predictionMeas_.template get<mtPredictionMeas::_gyr>() = Eigen::Vector3d(imu_msg->angular_velocity.x,imu_msg->angular_velocity.y,imu_msg->angular_velocity.z); if(init_state_.isInitialized()){ // mpFilter_->addPredictionMeas(predictionMeas_,imu_msg->header.stamp.toSec()); updateAndPublish(); } else { switch(init_state_.state_) { case FilterInitializationState::State::WaitForInitExternalPose: { std::cout << "-- Filter: Initializing using external pose ..." << std::endl; mpFilter_->resetWithPose(init_state_.WrWM_, init_state_.qMW_, imu_msg->header.stamp.toSec()); break; } case FilterInitializationState::State::WaitForInitUsingAccel: { std::cout << "-- Filter: Initializing using accel. measurement ..." << std::endl; mpFilter_->resetWithAccelerometer(predictionMeas_.template get<mtPredictionMeas::_acc>(),imu_msg->header.stamp.toSec()); break; } default: { std::cout << "Unhandeld initialization type." << std::endl; abort(); break; } } std::cout << std::setprecision(12); std::cout << "-- Filter: Initialized at t = " << imu_msg->header.stamp.toSec() << std::endl; init_state_.state_ = FilterInitializationState::State::Initialized; } } void imgCallback(const sensor_msgs::ImageConstPtr & img, const int camID = 0){ // Get image from msg cv_bridge::CvImagePtr cv_ptr; try { cv_ptr = cv_bridge::toCvCopy(img, sensor_msgs::image_encodings::TYPE_8UC1); } catch (cv_bridge::Exception& e) { ROS_ERROR("cv_bridge exception: %s", e.what()); return; } cv::Mat cv_img; cv_ptr->image.copyTo(cv_img); if(init_state_.isInitialized() && !cv_img.empty()){ double msgTime = img->header.stamp.toSec(); if(msgTime != imgUpdateMeas_.template get<mtImgMeas::_aux>().imgTime_){ for(int i=0;i<mtState::nCam_;i++){ if(imgUpdateMeas_.template get<mtImgMeas::_aux>().isValidPyr_[i]){ std::cout << " \033[31mFailed Synchronization of Camera Frames, t = " << msgTime << "\033[0m" << std::endl; } } imgUpdateMeas_.template get<mtImgMeas::_aux>().reset(msgTime); } imgUpdateMeas_.template get<mtImgMeas::_aux>().pyr_[camID].computeFromImage(cv_img,true); imgUpdateMeas_.template get<mtImgMeas::_aux>().isValidPyr_[camID] = true; if(imgUpdateMeas_.template get<mtImgMeas::_aux>().areAllValid()){ mpFilter_->template addUpdateMeas<0>(imgUpdateMeas_,msgTime); imgUpdateMeas_.template get<mtImgMeas::_aux>().reset(msgTime); updateAndPublish(); } } } }
ImuPrediction.hpp
公式的推导能够参考的论文,
A Primer on the Differential Calculus of 3D Orientations
\[ \begin{equation} \sideset{_I\,}{_{IB}}{\overline r} = \sideset{_I\,}{_{IB}}r + \Delta t \Phi _{IB}(\sideset {_B\,}{_B}{v} + \sideset{_B\,}{_v}{n}) \label{eq:position} \end{equation} \]
\[ \begin{equation} \sideset {_B\,}{_B}{ \overline v} = \sideset {_B\,}{_B}{v} + \Delta t (\Phi {_{IB}^{-1}} (g) + f - {w^{\times}}_{B}v_{B}) \label{eq:velocity} \end{equation} \]
\[ \begin{equation} {\overline \Phi} _{IB} = \Phi _{IB} \circ exp(\Delta t \omega) \label{eq:orientation} \end{equation} \]
\[ \begin{equation} \sideset {_B\,}{_f}{\overline b} = \sideset {_B\,}{_f}b + \Delta t \sideset{_B \,}{_{bf}} n \label{eq:noise1} \end{equation} \]
\[ \begin{equation} \sideset {_B\,}{_ \omega}{\overline b} = \sideset {_B\,}{_ \omega}b + \Delta t \sideset{_B \,}{_{b\omega}} n \label{eq:noise2} \end{equation} \]
\[ \begin{equation} {\mu _{i}}' = N^T(\mu _{i}) \hat {\omega} _{v} - \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} N^T(\mu _i) \frac{\hat v_{v}}{d (\rho _i)} + \omega _{\mu , i} \text{ , bearing vector} \label{eq:bearingVector} \end{equation} \]
\[ \begin{equation} {\rho _i}' = \frac{d \rho}{dt} = \frac{d \rho}{d d} \frac{d d}{dt} = \frac{ -\mu_i^T \hat{v_v}}{d'(\rho _i)} + \omega_{\rho,i} \text{, inverse distance} \label{eq:inversedistance} \end{equation} \]
template<typename FILTERSTATE> class ImuPrediction: public LWF::Prediction<FILTERSTATE>{ { void evalPrediction(mtState& output, const mtState& state, const mtNoise& noise, double dt) const { output.aux().MwWMmeas_ = meas_.template get<mtMeas::_gyr>(); output.aux().MwWMest_ = meas_.template get<mtMeas::_gyr>()-state.gyb(); const V3D imuRor = output.aux().MwWMest_+noise.template get<mtNoise::_att>()/sqrt(dt); const V3D dOmega = dt*imuRor; QPD dQ = dQ.exponentialMap(dOmega); for(unsigned int i=0;i<mtState::nMax_;i++){ const int camID = state.CfP(i).camID_; if(&output != &state){ output.CfP(i) = state.CfP(i); output.dep(i) = state.dep(i); } if(camID >= 0 && camID < mtState::nCam_){ //cam的角速度,在camera 坐标系 const V3D camRor = state.qCM(camID).rotate(imuRor); //这里的速度取了负号,camera 速度,在camera 坐标系 const V3D camVel = state.qCM(camID).rotate(V3D(imuRor.cross(state.MrMC(camID))-state.MvM())); oldC_ = state.CfP(i); oldD_ = state.dep(i); //公式7的离散公式,一阶积分 output.dep(i).p_ = oldD_.p_-dt*oldD_.getParameterDerivative()*oldC_.get_nor().getVec().transpose()*camVel + noise.template get<mtNoise::_fea>(i)(2)*sqrt(dt); V3D dm = -dt*(gSM(oldC_.get_nor().getVec())*camVel/oldD_.getDistance() + (M3D::Identity()-oldC_.get_nor().getVec()*oldC_.get_nor().getVec().transpose())*camRor) + oldC_.get_nor().getN()*noise.template get<mtNoise::_fea>(i).template block<2,1>(0,0)*sqrt(dt); QPD qm = qm.exponentialMap(dm); output.CfP(i).set_nor(oldC_.get_nor().rotated(qm)); // WARP corners if(state.CfP(i).trackWarping_){ bearingVectorJac_ = output.CfP(i).get_nor().getM().transpose()*(dt*gSM(qm.rotate(oldC_.get_nor().getVec()))*Lmat(dm)*( -1.0/oldD_.getDistance()*gSM(camVel) - (M3D::Identity()*(oldC_.get_nor().getVec().dot(camRor))+oldC_.get_nor().getVec()*camRor.transpose())) +MPD(qm).matrix())*oldC_.get_nor().getM(); output.CfP(i).set_warp_nor(bearingVectorJac_*oldC_.get_warp_nor()); } } } // 上面的1-5公式 output.WrWM() = state.WrWM()-dt*(state.qWM().rotate(state.MvM())-noise.template get<mtNoise::_pos>()/sqrt(dt)); output.MvM() = (M3D::Identity()-gSM(dOmega))*state.MvM()-dt*(meas_.template get<mtMeas::_acc>()-state.acb()+state.qWM().inverseRotate(g_)-noise.template get<mtNoise::_vel>()/sqrt(dt)); output.acb() = state.acb()+noise.template get<mtNoise::_acb>()*sqrt(dt); output.gyb() = state.gyb()+noise.template get<mtNoise::_gyb>()*sqrt(dt); output.qWM() = state.qWM()*dQ; //camera 和imu 的外参数 for(unsigned int i=0;i<mtState::nCam_;i++){ output.MrMC(i) = state.MrMC(i)+noise.template get<mtNoise::_vep>(i)*sqrt(dt); dQ = dQ.exponentialMap(noise.template get<mtNoise::_vea>(i)*sqrt(dt)); output.qCM(i) = state.qCM(i)*dQ; } output.aux().wMeasCov_ = prenoiP_.template block<3,3>(mtNoise::template getId<mtNoise::_att>(),mtNoise::template getId<mtNoise::_att>())/dt; output.fix(); } }
ImgUpdate.hpp
template<typename FILTERSTATE> class ImgUpdate: public LWF::Update<ImgInnovation<typename FILTERSTATE::mtState>,FILTERSTATE,ImgUpdateMeas<typename FILTERSTATE::mtState>,ImgUpdateNoise<typename FILTERSTATE::mtState>, ImgOutlierDetection<typename FILTERSTATE::mtState>,false>{ void preProcess(mtFilterState& filterState, const mtMeas& meas, bool& isFinished){ } void evalInnovation(mtInnovation& y, const mtState& state, const mtNoise& noise) const{ Eigen::Vector2d pixError; pixError(0) = static_cast<double>(state.aux().feaCoorMeas_[ID].get_c().x - featureOutput_.c().get_c().x); pixError(1) = static_cast<double>(state.aux().feaCoorMeas_[ID].get_c().y - featureOutput_.c().get_c().y); y.template get<mtInnovation::_pix>() = pixError + noise.template get<mtNoise::_pix>(); } }
world坐标和imu坐标的关系
template<unsigned int nMax, int nLevels, int patchSize,int nCam,int nPose> class FilterState: public LWF::FilterState<State<nMax,nLevels,patchSize,nCam,nPose>, PredictionMeas,PredictionNoise<State<nMax,nLevels,patchSize,nCam,nPose>>,0>{ void initWithAccelerometer(const V3D& fMeasInit) { V3D unitZ(0, 0, 1); if (fMeasInit.norm() > 1e-6) { state_.qWM().setFromVectors(fMeasInit, unitZ); } else { state_.qWM().setIdentity(); } }
图像部分主要的代码是
MultilevelPatchAlignement.hpp
这里就是一个高斯牛顿法优化,目标点的位置。
bool align2D(FeatureCoordinates& cOut, const ImagePyramid<nLevels>& pyr, const MultilevelPatch<nLevels,patch_size>& mp, const FeatureCoordinates& cInit ,const int l1, const int l2, const int maxIter = 10, const double minPixUpd = 0.03){ for(int iter = 0; iter<maxIter; ++iter){ if(std::isnan(cOut.get_c().x) || std::isnan(cOut.get_c().y)){ assert(false); return false; } if(!getLinearAlignEquations(pyr,mp,cOut,l1,l2,A_,b_)){ return false; } svd_.compute(A_, Eigen::ComputeThinU | Eigen::ComputeThinV); if(svd_.nonzeroSingularValues()<2){ return false; } update = svd_.solve(b_); cOut.set_c(cv::Point2f(cOut.get_c().x + update[0],cOut.get_c().y + update[1]),false); s = update[0]*update[0]+update[1]*update[1]; if(s < min_update_squared){ converged=true; break; } } } //这个函数就是上面那个怎么构造图像块像素差做为EKF的更新 bool getLinearAlignEquations(const ImagePyramid<nLevels>& pyr, const MultilevelPatch<nLevels,patch_size>& mp, const FeatureCoordinates& c, const int l1, const int l2, Eigen::MatrixXf& A, Eigen::MatrixXf& b){ }
上面是我本身的无人机跑的和真实的运动捕捉系统的对比,是比较好的数据。说明在调的比较好的数据下是能够获得不错的效果。(红色是vrpn,黄色是rovio,蓝色是我给飞机的设定点,红色和黄色的差距还行,有时候比较大)
我使用的是EKF的优化是特征点位置,要是换成IEKF,优化图像块的像素差,可能效果会更好。毕竟这东西是个高度非线性函数。
那个bearing vector的公式我还不会推导,对新增的feature 的initial depth的比较精确的估计对算法精度有帮助,能够维护个地图,
固然在地图中作个local mapping thread, 也是能够的,可是感受不能很好的和原来的算法耦合起来就没作。
这里最须要改进的应该是特征点的选取,原来算法的效率过低了。并且会发现选取的不少特征点不是那么明显的角点,有更好的选择,不过为了保持距离的限制,妥协了。还有就是速度太慢了。
出现发散的状况,通常就是outlier太多了,没有追踪足够的特征点。由于速度发散,会致使图像更新为了矫正在特征点深度位置上存在巨大的错误速度,把深度设到 无穷远去,这样图像更新就没有做用,进一步致使速度发散。一发散就不可能回来了。