k折交叉验证

一般情况将K折交叉验证用于模型调优,找到使得模型泛化性能最优的超参值。,找到后,在全部训练集上重新训练模型,并使用独立测试集对模型性能做出最终评价。   K折交叉验证使用了无重复抽样技术的好处:每次迭代过程中每个样本点只有一次被划入训练集或测试集的机会。 K折交叉验证图: 如果训练数据集相对较小,则增大k值。 增大k值,在每次迭代过程中将会有更多的数据用于模型训练,能够得到最小偏差,同时算法时间延
相关文章
相关标签/搜索