SVM-非线性支持向量机及SMO算法

线性不可分情况 线性可分问题的支持向量机学习方法,对线性不可分训练数据是不适用的,为了满足函数间隔大于1的约束条件,可以对每个样本(x_i,y_i)(x_i,y_i)引进一个松弛变量ξ_i≥0ξ_i≥0,使函数间隔加上松弛变量大于等于1,, y_i(w⋅x_i+b)≥1−ξ_iy_i(w⋅x_i+b)≥1−ξ_i 目标函数变为 12||w||2+C∑_j=1Nξ_i12||w||2+C∑_j=1N
相关文章
相关标签/搜索