SLAM相机定位

SLAM相机定位 摘要 深度学习在相机定位方面取得了很好的结果,但是当前的单幅图像定位技术通常会缺乏鲁棒性,从而导致较大的离群值。在某种程度上,这已通过序列的(多图像)或几何约束方法解决,这些方法可以学习拒绝动态对象和光照条件以获得更好的性能。在这项工作中,我们显示出注意力可以用来迫使网络专注于几何上更鲁棒的对象和特征,即使仅使用单个图像作为输入,也可以在通用基准中实现最新的性能。通过公共室内和室
相关文章
相关标签/搜索