【矩阵论笔记】方阵函数计算(一) Jordan标准型法

方阵函数计算 1、Jordan标准型法 2、最小多项式法 和算方阵多项式的办法一样 Jordan标准型法 例子 求特征向量要反过来减。 它的秩是2,基础解系是一个,特征向量有一个。 λ 1 = λ 2 = 1 \lambda_1=\lambda_2=1 λ1​=λ2​=1求出来的特征矩阵秩为2,有一个特征向量,几何重数是1,小于代数重数2,所以不能相似对角化,只能化成Jordan标准型。 这时候还
相关文章
相关标签/搜索