图像修复之Image Inpainting for Irregular Holes Using Partial Convolutions

1. 摘要 现有的基于深度学习的图像修补方法在损坏的图像上使用标准卷积网络,使用卷积滤波器响应以有效像素以及掩蔽孔中的替代值(通常为平均值)为条件。 这通常会导致诸如颜色差异和模糊等伪影。 后处理通常用于减少这些工件,但代价很高,可能会失败。 我们提出使用部分卷积,部分卷积指的是卷积只在图片的有效区域进行(mask部分为0),并且图片的mask会随着网络的层数加深不断迭代和收缩,也就是说带有mas
相关文章
相关标签/搜索