17. 交叉验证 & 模型持久化

交叉验证引入前置: 训练集,验证集与测试集 当模型建立后,我们需要评估下模型的效果,例如,是否存在欠拟合,过拟合等。但是,在我们建立模型时,我们不能使用全部数据用于训练(考试的示例)。因此,我们可以将数据集分为训练集与测试集。然而,模型并不是绝对单一化的,其可能含有很多种不同的配置方案(参数),这种参数不同于我们之前接触过的权重(w)与偏置(b),这是因为,权重与偏置是通过数据学习来的,而这种参数
相关文章
相关标签/搜索