sklearn-交叉验证

交叉验证:评估模型的表现 如果我们训练出的模型只在训练集上表现极好,但在未知的数据上效果很差,说明出现了过拟合,为了避免这种现象的出现,我们需要验证集来评估我们的模型。 当我们在训练集上训练好一个模型后,现在验证集上对模型进行,如果验证集上的效果比较好时,再到测试集上就行最后的评估。但是单纯的将数据集分为三部分,会大大减少模型学习的数据量(因为有时数据是很难获取的,数目可能会比较少),并且最后模型
相关文章
相关标签/搜索