六、Sklearn-CrossValidation交叉验证

交叉验证概述 进行模型验证的一个重要目的是要选出一个最合适的模型,对于监督学习而言,我们希望模型对于未知数据的泛化能力强,所以就需要模型验证这一过程来体现不同的模型对于未知数据的表现效果。 最先我们用训练准确度(用全部数据进行训练和测试)来衡量模型的表现,这种方法会导致模型过拟合;为了解决这一问题,我们将所有数据分成训练集和测试集两部分,我们用训练集进行模型训练,得到的模型再用测试集来衡量模型的预
相关文章
相关标签/搜索