交叉验证是常常用到的验证方法
使用sklearn能够很大程度上简化交叉验证的过程
使用过程见下方:code
from sklearn import cross_validation gbdt=GradientBoostingRegressor() score = cross_validation.cross_val_score(gbdt, train_set, label_set, cv=10, scoring='accuracy') 这里以gbdt模型为例 train_set:训练集 label_set:标签 cv: 交叉验证的倍数 scoring: 返回结果的类型,能够自定义,也有不少默认选项 例如‘accuracy’, 就是返回准确率 [‘accuracy‘, ‘adjusted_rand_score‘, ‘average_precision‘, ‘f1‘, ‘f1_macro‘, ‘f1_micro‘, ‘f1_samples‘, ‘f1_weighted‘, ‘log_loss‘, ‘mean_absolute_error‘, ‘mean_squared_error‘, ‘median_absolute_error‘, ‘precision‘, ‘precision_macro‘, ‘precision_micro‘, ‘precision_samples‘, ‘precision_weighted‘, ‘r2‘, ‘recall‘, ‘recall_macro‘, ‘recall_micro‘, ‘recall_samples‘, ‘recall_weighted‘, ‘roc_auc‘] 都是能够的
这就是简单的用法,只有scoring比较复杂,其余都比较简单ci