卷积神经网络(CNN)最简单,最清晰的解释

卷积神经网络CNN及代码实现示例 一、CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的。当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢,例如一张黑白的 28×2828×28 的手写数字图片,输入层的神经元就有784个,如下图所示: 若在中间只使用一层隐藏层,参数 w 就有 784×15=11760784×15=117
相关文章
相关标签/搜索