图解常见的九种设计模式

在软件工程中,设计模式(Design Pattern)是对软件设计中广泛存在(反复出现)的各类问题,所提出的解决方案。根据模式的目的来划分的话,GoF(Gang of Four)设计模式能够分为如下 3 种类型:php

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

一、建立型模式:用来描述 “如何建立对象”,它的主要特色是 “将对象的建立和使用分离”。包括单例、原型、工厂方法、抽象工厂和建造者 5 种模式。node

二、结构型模式:用来描述如何将类或对象按照某种布局组成更大的结构。包括代理、适配器、桥接、装饰、外观、享元和组合 7 种模式。react

三、行为型模式:用来识别对象之间的经常使用交流模式以及如何分配职责。包括模板方法、策略、命令、职责链、状态、观察者、中介者、迭代器、访问者、备忘录和解释器 11 种模式。ios

接下来阿宝哥将结合一些生活中的场景并经过精美的配图,来向你们介绍 9 种经常使用的设计模式。git

1、建造者模式

建造者模式(Builder Pattern)将一个复杂对象分解成多个相对简单的部分,而后根据不一样须要分别建立它们,最后构建成该复杂对象。github

一辆小汽车 ???? 一般由 发动机、底盘、车身和电气设备 四大部分组成。汽车电气设备的内部构造很复杂,简单起见,咱们只考虑三个部分:引擎、底盘和车身。算法

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

在现实生活中,小汽车也是由不一样的零部件组装而成,好比上图中咱们把小汽车分红引擎、底盘和车身三大部分。下面咱们来看一下如何使用建造者模式来造车子。sql

1.1 实现代码
class Car {
  constructor(
    public engine: string,
    public chassis: string, 
    public body: string
  ) {}
}

class CarBuilder {
  engine!: string; // 引擎
  chassis!: string; // 底盘
  body!: string; // 车身

  addChassis(chassis: string) {
    this.chassis = chassis;
    return this;
  }

  addEngine(engine: string) {
    this.engine = engine;
    return this;
  }

  addBody(body: string) {
    this.body = body;
    return this;
  }

  build() {
    return new Car(this.engine, this.chassis, this.body);
  }
}

在以上代码中,咱们定义一个 CarBuilder 类,并提供了 addChassis、addEngine 和 addBody 3 个方法用于组装车子的不一样部位,当车子的 3 个部分都组装完成后,调用 build 方法就能够开始造车。axios

1.2 使用示例
const car = new CarBuilder()
  .addEngine('v12')
  .addBody('镁合金')
  .addChassis('复合材料')
  .build();
1.3 应用场景及案例
  • 须要生成的产品对象有复杂的内部结构,这些产品对象一般包含多个成员属性。
  • 须要生成的产品对象的属性相互依赖,须要指定其生成顺序。
  • 隔离复杂对象的建立和使用,并使得相同的建立过程能够建立不一样的产品。
  • Github - node-sql-query:https://github.com/dresende/node-sql-query

2、工厂模式

在现实生活中,工厂是负责生产产品的,好比牛奶、面包或礼物等,这些产品知足了咱们平常的生理需求。设计模式

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

在众多设计模式当中,有一种被称为工厂模式的设计模式,它提供了建立对象的最佳方式。工厂模式能够分为:简单工厂模式、工厂方法模式和抽象工厂模式。

2.1 简单工厂

简单工厂模式又叫 静态方法模式,由于工厂类中定义了一个静态方法用于建立对象。简单工厂让使用者不用知道具体的参数就能够建立出所需的 ”产品“ 类,即便用者能够直接消费产品而不须要知道产品的具体生产细节。

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

在上图中,阿宝哥模拟了用户购车的流程,小王和小秦分别向 BMW 工厂订购了 BMW730 和 BMW840 型号的车型,接着工厂会先判断用户选择的车型,而后按照对应的模型进行生产并在生产完成后交付给用户。

下面咱们来看一下如何使用简单工厂来描述 BMW 工厂生产指定型号车子的过程。

2.1.1 实现代码
abstract class BMW {
  abstract run(): void;
}

class BMW730 extends BMW {
  run(): void {
    console.log("BMW730 发动咯");
  }
}

class BMW840 extends BMW {
  run(): void {
    console.log("BMW840 发动咯");
  }
}

class BMWFactory {
  public static produceBMW(model: "730" | "840"): BMW {
    if (model === "730") {
      return new BMW730();
    } else {
      return new BMW840();
    }
  }
}

在以上代码中,咱们定义一个 BMWFactory 类,该类提供了一个静态的 produceBMW() 方法,用于根据不一样的模型参数来建立不一样型号的车子。

2.1.2 使用示例
const bmw730 = BMWFactory.produceBMW("730");
const bmw840 = BMWFactory.produceBMW("840");

bmw730.run();
bmw840.run();
2.1.3 应用场景
  • 工厂类负责建立的对象比较少:因为建立的对象比较少,不会形成工厂方法中业务逻辑过于复杂。
  • 客户端只需知道传入工厂类静态方法的参数,而不须要关心建立对象的细节。

2.2 工厂方法

工厂方法模式(Factory Method Pattern)又称为工厂模式,也叫多态工厂(Polymorphic Factory)模式,它属于类建立型模式。

在工厂方法模式中,工厂父类负责定义建立产品对象的公共接口,而工厂子类则负责生成具体的产品对象, 这样作的目的是将产品类的实例化操做延迟到工厂子类中完成,即经过工厂子类来肯定究竟应该实例化哪个具体产品类。

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

在上图中,阿宝哥模拟了用户购车的流程,小王和小秦分别向 BMW 730 和 BMW 840 工厂订购了 BMW730 和 BMW840 型号的车子,接着工厂按照对应的模型进行生产并在生产完成后交付给用户。

一样,咱们来看一下如何使用工厂方法来描述 BMW 工厂生产指定型号车子的过程。

2.2.1 实现代码
abstract class BMWFactory {
  abstract produceBMW(): BMW;
}

class BMW730Factory extends BMWFactory {
  produceBMW(): BMW {
    return new BMW730();
  }
}

class BMW840Factory extends BMWFactory {
  produceBMW(): BMW {
    return new BMW840();
  }
}

在以上代码中,咱们分别建立了 BMW730Factory 和 BMW840Factory 两个工厂类,而后使用这两个类的实例来生产不一样型号的车子。

2.2.2 使用示例
const bmw730Factory = new BMW730Factory();
const bmw840Factory = new BMW840Factory();

const bmw730 = bmw730Factory.produceBMW();
const bmw840 = bmw840Factory.produceBMW();

bmw730.run();
bmw840.run();
2.2.3 应用场景
  • 一个类不知道它所须要的对象的类:在工厂方法模式中,客户端不须要知道具体产品类的类名,只须要知道所对应的工厂便可,具体的产品对象由具体工厂类建立;客户端须要知道建立具体产品的工厂类。
  • 一个类经过其子类来指定建立哪一个对象:在工厂方法模式中,对于抽象工厂类只须要提供一个建立产品的接口,而由其子类来肯定具体要建立的对象,利用面向对象的多态性和里氏代换原则,在程序运行时,子类对象将覆盖父类对象,从而使得系统更容易扩展。

2.3 抽象工厂

抽象工厂模式(Abstract Factory Pattern),提供一个建立一系列相关或相互依赖对象的接口,而无须指定它们具体的类。

在工厂方法模式中具体工厂负责生产具体的产品,每个具体工厂对应一种具体产品,工厂方法也具备惟一性,通常状况下,一个具体工厂中只有一个工厂方法或者一组重载的工厂方法。可是有时候咱们须要一个工厂能够提供多个产品对象,而不是单一的产品对象。

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

在上图中,阿宝哥模拟了用户购车的流程,小王向 BMW 工厂订购了 BMW730,工厂按照 730 对应的模型进行生产并在生产完成后交付给小王。而小秦向同一个 BMW 工厂订购了 BMW840,工厂按照 840 对应的模型进行生产并在生产完成后交付给小秦。

下面咱们来看一下如何使用抽象工厂来描述上述的购车过程。

2.3.1 实现代码
abstract class BMWFactory {
  abstract produce730BMW(): BMW730;
  abstract produce840BMW(): BMW840;
}

class ConcreteBMWFactory extends BMWFactory {
  produce730BMW(): BMW730 {
    return new BMW730();
  }

  produce840BMW(): BMW840 {
    return new BMW840();
  }
}
2.3.2 使用示例
const bmwFactory = new ConcreteBMWFactory();

const bmw730 = bmwFactory.produce730BMW();
const bmw840 = bmwFactory.produce840BMW();

bmw730.run();
bmw840.run();
2.3.3 应用场景
  • 一个系统不该当依赖于产品类实例如何被建立、组合和表达的细节,这对于全部类型的工厂模式都是重要的。
  • 系统中有多于一个的产品族,而每次只使用其中某一产品族。
  • 系统提供一个产品类的库,全部的产品以一样的接口出现,从而使客户端不依赖于具体实现。

3、单例模式

单例模式(Singleton Pattern)是一种经常使用的模式,有一些对象咱们每每只须要一个,好比全局缓存、浏览器中的 window 对象等。单例模式用于保证一个类仅有一个实例,并提供一个访问它的全局访问点。

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

在上图中,阿宝哥模拟了借车的流程,小王临时有急事找阿宝哥借车子,阿宝哥家的车子恰好没用,就借给小王了。当天,小秦也须要用车子,也找阿宝哥借车,由于阿宝哥家里只有一辆车子,因此就没有车可借了。

对于车子来讲,它虽然给生活带来了很大的便利,但养车也须要一笔不小的费用(车位费、油费和保养费等),因此阿宝哥家里只有一辆车子。

在开发软件系统时,若是遇到建立对象时耗时过多或耗资源过多,但又常常用到的对象,咱们就能够考虑使用单例模式。

下面咱们来看一下如何使用 TypeScript 来实现单例模式。

3.1 实现代码
class Singleton {
  // 定义私有的静态属性,来保存对象实例
  private static singleton: Singleton;
  private constructor() {}

  // 提供一个静态的方法来获取对象实例
  public static getInstance(): Singleton {
    if (!Singleton.singleton) {
      Singleton.singleton = new Singleton();
    }
    return Singleton.singleton;
  }
}
3.2 使用示例
let instance1 = Singleton.getInstance();
let instance2 = Singleton.getInstance();

console.log(instance1 === instance2); // true
3.3 应用场景
  • 须要频繁实例化而后销毁的对象。
  • 建立对象时耗时过多或耗资源过多,但又常常用到的对象。
  • 系统只须要一个实例对象,如系统要求提供一个惟一的序列号生成器或资源管理器,或者须要考虑资源消耗太大而只容许建立一个对象。

4、适配器模式

在实际生活中,也存在适配器的使用场景,好比:港式插头转换器、电源适配器和 USB 转接口。而在软件工程中,适配器模式的做用是解决两个软件实体间的接口不兼容的问题。使用适配器模式以后,本来因为接口不兼容而不能工做的两个软件实体就能够一块儿工做。

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=
4.1 实现代码
interface Logger {
  info(message: string): Promise<void>;
}

interface CloudLogger {
  sendToServer(message: string, type: string): Promise<void>;
}

class AliLogger implements CloudLogger {
  public async sendToServer(message: string, type: string): Promise<void> {
    console.info(message);
    console.info('This Message was saved with AliLogger');
  }
}

class CloudLoggerAdapter implements Logger {
  protected cloudLogger: CloudLogger;

  constructor (cloudLogger: CloudLogger) {
    this.cloudLogger = cloudLogger;
  }

  public async info(message: string): Promise<void> {
    await this.cloudLogger.sendToServer(message, 'info');
  }
}

class NotificationService {
  protected logger: Logger;
  
  constructor (logger: Logger) {    
    this.logger = logger;
  }

  public async send(message: string): Promise<void> {
    await this.logger.info(`Notification sended: ${message}`);
  }
}

在以上代码中,由于 Logger 和 CloudLogger 这两个接口不匹配,因此咱们引入了 CloudLoggerAdapter 适配器来解决兼容性问题。

4.2 使用示例
(async () => {
  const aliLogger = new AliLogger();
  const cloudLoggerAdapter = new CloudLoggerAdapter(aliLogger);
  const notificationService = new NotificationService(cloudLoggerAdapter);
  await notificationService.send('Hello semlinker, To Cloud');
})();
4.3 应用场景及案例
  • 之前开发的系统存在知足新系统功能需求的类,但其接口同新系统的接口不一致。
  • 使用第三方提供的组件,但组件接口定义和本身要求的接口定义不一样。
  • Github - axios-mock-adapter:https://github.com/ctimmerm/axios-mock-adapter

5、观察者模式 & 发布订阅模式

5.1 观察者模式

观察者模式,它定义了一种一对多的关系,让多个观察者对象同时监听某一个主题对象,这个主题对象的状态发生变化时就会通知全部的观察者对象,使得它们可以自动更新本身。

在观察者模式中有两个主要角色:Subject(主题)和 Observer(观察者)。

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

在上图中,Subject(主题)就是阿宝哥的 TS 专题文章,而观察者就是小秦和小王。因为观察者模式支持简单的广播通讯,当消息更新时,会自动通知全部的观察者。

下面咱们来看一下如何使用 TypeScript 来实现观察者模式。

5.1.1 实现代码
interface Observer {
  notify: Function;
}

class ConcreteObserver implements Observer{
  constructor(private name: string) {}

  notify() {
    console.log(`${this.name} has been notified.`);
  }
}

class Subject { 
  private observers: Observer[] = [];

  public addObserver(observer: Observer): void {
    console.log(observer, "is pushed!");
    this.observers.push(observer);
  }

  public deleteObserver(observer: Observer): void {
    console.log("remove", observer);
    const n: number = this.observers.indexOf(observer);
    n != -1 && this.observers.splice(n, 1);
  }

  public notifyObservers(): void {
    console.log("notify all the observers", this.observers);
    this.observers.forEach(observer => observer.notify());
  }
}
5.1.2 使用示例
const subject: Subject = new Subject();
const xiaoQin = new ConcreteObserver("小秦");
const xiaoWang = new ConcreteObserver("小王");
subject.addObserver(xiaoQin);
subject.addObserver(xiaoWang);
subject.notifyObservers();

subject.deleteObserver(xiaoQin);
subject.notifyObservers();
5.1.3 应用场景及案例
  • 一个对象的行为依赖于另外一个对象的状态。或者换一种说法,当被观察对象(目标对象)的状态发生改变时 ,会直接影响到观察对象的行为。
  • RxJS Subject:https://github.com/ReactiveX/rxjs/blob/master/src/internal/Subject.ts
  • RxJS Subject 文档:https://rxjs.dev/guide/subject

5.2 发布订阅模式

在软件架构中,发布/订阅是一种消息范式,消息的发送者(称为发布者)不会将消息直接发送给特定的接收者(称为订阅者)。而是将发布的消息分为不一样的类别,而后分别发送给不一样的订阅者。 一样的,订阅者能够表达对一个或多个类别的兴趣,只接收感兴趣的消息,无需了解哪些发布者存在。

在发布订阅模式中有三个主要角色:Publisher(发布者)、 Channels(通道)和 Subscriber(订阅者)。

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

在上图中,Publisher(发布者)是阿宝哥,Channels(通道)中 Topic A 和 Topic B 分别对应于 TS 专题和 Deno 专题,而 Subscriber(订阅者)就是小秦、小王和小池。

下面咱们来看一下如何使用 TypeScript 来实现发布订阅模式。

5.2.1 实现代码
type EventHandler = (...args: any[]) => any;

class EventEmitter {
  private c = new Map<string, EventHandler[]>();

  // 订阅指定的主题
  subscribe(topic: string, ...handlers: EventHandler[]) {
    let topics = this.c.get(topic);
    if (!topics) {
      this.c.set(topic, topics = []);
    }
    topics.push(...handlers);
  }

  // 取消订阅指定的主题
  unsubscribe(topic: string, handler?: EventHandler): boolean {
    if (!handler) {
      return this.c.delete(topic);
    }

    const topics = this.c.get(topic);
    if (!topics) {
      return false;
    }
    
    const index = topics.indexOf(handler);

    if (index < 0) {
      return false;
    }
    topics.splice(index, 1);
    if (topics.length === 0) {
      this.c.delete(topic);
    }
    return true;
  }

  // 为指定的主题发布消息
  publish(topic: string, ...args: any[]): any[] | null {
    const topics = this.c.get(topic);
    if (!topics) {
      return null;
    }
    return topics.map(handler => {
      try {
        return handler(...args);
      } catch (e) {
        console.error(e);
        return null;
      }
    });
  }
}
5.2.2 使用示例
const eventEmitter = new EventEmitter();
eventEmitter.subscribe("ts", (msg) => console.log(`收到订阅的消息:${msg}`) );

eventEmitter.publish("ts", "TypeScript发布订阅模式");
eventEmitter.unsubscribe("ts");
eventEmitter.publish("ts", "TypeScript发布订阅模式");
5.2.3 应用场景
  • 对象间存在一对多关系,一个对象的状态发生改变会影响其余对象。
  • 做为事件总线,来实现不一样组件间或模块间的通讯。
  • BetterScroll - EventEmitter:https://github.com/ustbhuangyi/better-scroll/blob/dev/packages/shared-utils/src/events.ts
  • EventEmitter 在插件化架构的应用:https://mp.weixin.qq.com/s/N4iw3bi0bxJ57J8EAp5ctQ

6、策略模式

策略模式(Strategy Pattern)定义了一系列的算法,把它们一个个封装起来,而且使它们能够互相替换。策略模式的重心不是如何实现算法,而是如何组织、调用这些算法,从而让程序结构更灵活、可维护、可扩展。

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

目前在一些主流的 Web 站点中,都提供了多种不一样的登陆方式。好比帐号密码登陆、手机验证码登陆和第三方登陆。为了方便维护不一样的登陆方式,咱们能够把不一样的登陆方式封装成不一样的登陆策略。

下面咱们来看一下如何使用策略模式来封装不一样的登陆方式。

6.1 实现代码

为了更好地理解如下代码,咱们先来看一下对应的 UML 类图:

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=
interface Strategy {
  authenticate(...args: any): any;
}

class Authenticator {
  strategy: any;
  constructor() {
    this.strategy = null;
  }

  setStrategy(strategy: any) {
    this.strategy = strategy;
  }

  authenticate(...args: any) {
    if (!this.strategy) {
      console.log('还没有设置认证策略');
      return;
    }
    return this.strategy.authenticate(...args);
  }
}

class WechatStrategy implements Strategy {
  authenticate(wechatToken: string) {
    if (wechatToken !== '123') {
      console.log('无效的微信用户');
      return;
    }
    console.log('微信认证成功');
  }
}

class LocalStrategy implements Strategy {
  authenticate(username: string, password: string) {
    if (username !== 'abao' && password !== '123') {
      console.log('帐号或密码错误');
      return;
    }
    console.log('帐号和密码认证成功');
  }
}
6.2 使用示例
const auth = new Authenticator();

auth.setStrategy(new WechatStrategy());
auth.authenticate('123456');

auth.setStrategy(new LocalStrategy());
auth.authenticate('abao', '123');
6.3 应用场景及案例
  • 一个系统须要动态地在几种算法中选择一种时,可将每一个算法封装到策略类中。
  • 多个类只区别在表现行为不一样,可使用策略模式,在运行时动态选择具体要执行的行为。
  • 一个类定义了多种行为,而且这些行为在这个类的操做中以多个条件语句的形式出现,可将每一个条件分支移入它们各自的策略类中以代替这些条件语句。
  • Github - passport-local:https://github.com/jaredhanson/passport-local
  • Github - passport-oauth2:https://github.com/jaredhanson/passport-oauth2
  • Github - zod:https://github.com/vriad/zod/blob/master/src/types/string.ts

7、职责链模式

职责链模式是使多个对象都有机会处理请求,从而避免请求的发送者和接受者之间的耦合关系。在职责链模式里,不少对象由每个对象对其下家的引用而链接起来造成一条链。请求在这个链上传递,直到链上的某一个对象决定处理此请求。

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

在公司中不一样的岗位拥有不一样的职责与权限。以上述的请假流程为例,当阿宝哥请 1 天假时,只要组长审批就能够了,不须要流转到主管和总监。若是职责链上的某个环节没法处理当前的请求,若含有下个环节,则会把请求转交给下个环节来处理。

在平常的软件开发过程当中,对于职责链来讲,一种常见的应用场景是中间件,下面咱们来看一下如何利用职责链来处理请求。

7.1 实现代码

为了更好地理解如下代码,咱们先来看一下对应的 UML 类图:

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=
interface IHandler {
  addMiddleware(h: IHandler): IHandler;
  get(url: string, callback: (data: any) => void): void;
}

abstract class AbstractHandler implements IHandler {
  next!: IHandler;
  addMiddleware(h: IHandler) {
    this.next = h;
    return this.next;
  }

  get(url: string, callback: (data: any) => void) {
    if (this.next) {
      return this.next.get(url, callback);
    }
  }
}

// 定义Auth中间件
class Auth extends AbstractHandler {
  isAuthenticated: boolean;
  constructor(username: string, password: string) {
    super();

    this.isAuthenticated = false;
    if (username === 'abao' && password === '123') {
      this.isAuthenticated = true;
    }
  }

  get(url: string, callback: (data: any) => void) {
    if (this.isAuthenticated) {
      return super.get(url, callback);
    } else {
      throw new Error('Not Authorized');
    }
  }
}

// 定义Logger中间件
class Logger extends AbstractHandler {
  get(url: string, callback: (data: any) => void) {
    console.log('/GET Request to: ', url);
    return super.get(url, callback);
  }
}

class Route extends AbstractHandler {
  URLMaps: {[key: string]: any};
  constructor() {
    super();
    this.URLMaps = {
      '/api/todos': [{ title: 'learn ts' }, { title: 'learn react' }],
      '/api/random': Math.random(),
    };
  }

  get(url: string, callback: (data: any) => void) {
    super.get(url, callback);

    if (this.URLMaps.hasOwnProperty(url)) {
      callback(this.URLMaps[url]);
    }
  }
}
7.2 使用示例
const route = new Route();
route.addMiddleware(new Auth('abao', '123')).addMiddleware(new Logger());

route.get('/api/todos', data => {
  console.log(JSON.stringify({ data }, null, 2));
});

route.get('/api/random', data => {
  console.log(data);
});
7.3 应用场景
  • 可处理一个请求的对象集合应被动态指定。
  • 想在不明确指定接收者的状况下,向多个对象中的一个提交一个请求。
  • 有多个对象能够处理一个请求,哪一个对象处理该请求运行时自动肯定,客户端只须要把请求提交到链上便可。

8、模板方法模式

模板方法模式由两部分结构组成:抽象父类和具体的实现子类。一般在抽象父类中封装了子类的算法框架,也包括实现一些公共方法以及封装子类中全部方法的执行顺序。子类经过继承这个抽象类,也继承了整个算法结构,而且能够选择重写父类的方法。

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

在上图中,阿宝哥经过使用不一样的解析器来分别解析 CSV 和 Markup 文件。虽然解析的是不一样的类型的文件,但文件的处理流程是同样的。这里主要包含读取文件、解析文件和打印数据三个步骤。针对这个场景,咱们就能够引入模板方法来封装以上三个步骤的处理顺序。

下面咱们来看一下如何使用模板方法来实现上述的解析流程。

8.1 实现代码

为了更好地理解如下代码,咱们先来看一下对应的 UML 类图:

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=
import fs from 'fs';

abstract class DataParser {
  data: string = '';
  out: any = null;

  // 这就是所谓的模板方法
  parse(pathUrl: string) {
    this.readFile(pathUrl);
    this.doParsing();
    this.printData();
  }

  readFile(pathUrl: string) {
    this.data = fs.readFileSync(pathUrl, 'utf8');
  }

  abstract doParsing(): void;
  
  printData() {
    console.log(this.out);
  }
}

class CSVParser extends DataParser {
  doParsing() {
    this.out = this.data.split(',');
  }
}

class MarkupParser extends DataParser {
  doParsing() {
    this.out = this.data.match(/<\w+>.*<\/\w+>/gim);
  }
}
8.2 使用示例
const csvPath = './data.csv';
const mdPath = './design-pattern.md';

new CSVParser().parse(csvPath);
new MarkupParser().parse(mdPath);
8.3 应用场景
  • 算法的总体步骤很固定,但其中个别部分易变时,这时候可使用模板方法模式,将容易变的部分抽象出来,供子类实现。
  • 当须要控制子类的扩展时,模板方法只在特定点调用钩子操做,这样就只容许在这些点进行扩展。

9、参考资源

  • 维基百科 - 设计模式
  • Java设计模式:23种设计模式全面解析
  • Design Patterns Everyday

 

 

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

相关文章
相关标签/搜索