深度学习第21讲:迁移学习的基本原理和实践

作为一门实验性学科,深度学习通常需要反复的实验和结果论证。在现在和将来,是否有海量的数据资源和强大的计算资源,这是决定学界和业界深度学习和人工智能发展的关键因素。通常情况下,获取海量的数据资源对于企业而言并非易事,尤其是对于像医疗等特定领域,要想做一个基于深度学习的医学影像的自动化诊断系统,大量且高质量的打标数据非常关键。但通常而言,莫说高质量,就是想获取大量的影像数据就已困难重重。 那怎么办呢?
相关文章
相关标签/搜索