CTR学习笔记&代码实现2-深度ctr模型 MLP->Wide&Deep

背景

这一篇咱们从基础的深度ctr模型谈起。我很喜欢Wide&Deep的框架感受以后不少改进均可以归入这个框架中。Wide负责样本中出现的频繁项挖掘,Deep负责样本中未出现的特征泛化。然后续的改进要么用不一样的IFC让Deep更有效的提取特征交互信息,要么是让Wide更好的记忆样本信息html

如下代码针对Dense输入感受更容易理解模型结构,其余针对spare输入的模型和完整代码 👇
https://github.com/DSXiangLi/CTRpython

Embedding + MLP

点击率模型最初在深度学习上的尝试是从简单的MLP开始的。把高维稀疏的离散特征作Embedding处理,而后把Embedding拼接做为MLP的输入,通过多层全联接神经网络的非线性变换获得对点击率的预测。git

不知道你是否也像我同样困惑过,这个Embedding+MLP究竟学到了什么信息?MLP的Embedding和FM的Embedding学到的是一样的特征交互信息么?最近从大神那里听到一个蛮有说服力的观点,固然keep skeptical,欢迎一块儿讨论~

mlp能够学到全部特征低阶和高阶的信息表达,但依赖庞大的搜索空间。在样本有限,参数也有限的状况下每每只能学到有限的信息。所以才依赖于基于业务理解的特征工程来帮助mlp在有限的空间下学到更多有效的特征交互信息。FM的向量内积只是二阶特征工程的一种方法。以后针对deep的不少改进也是在探索如何把特征工程的业务经验用于更好的提取特征交互信息github

代码实现

def build_features(numeric_handle):
    f_sparse = []
    f_dense = []

    for col, config in EMB_CONFIGS.items():
        ind = tf.feature_column.categorical_column_with_hash_bucket(col, hash_bucket_size = config['hash_size'])
        one_hot = tf.feature_column.indicator_column(ind)
        f_sparse.append(one_hot)

    # Method1 for numeric feature
    if numeric_handle == 'bucketize':
        # Method1 'onehot': bucket to one hot
        for col, config in BUCKET_CONFIGS.items():
            num = tf.feature_column.numeric_column( col )
            bucket = tf.feature_column.bucketized_column( num, boundaries=config )
            f_sparse.append(bucket)
    else :
        # Method2 'dense': concatenate with embedding
        for col, config in BUCKET_CONFIGS.items():
            num = tf.feature_column.numeric_column( col )
            f_dense.append(num)
    return f_sparse, f_dense

@tf_estimator_model
def model_fn(features, labels, mode, params):
    sparse_columns, dense_columns = build_features(params['numeric_handle'])

    with tf.variable_scope('EmbeddingInput'):
        embedding_input = []
        for f_sparse in sparse_columns:
            sparse_input = tf.feature_column.input_layer(features, f_sparse)

            input_dim = sparse_input.get_shape().as_list()[-1]

            init = tf.random_normal(shape = [input_dim, params['embedding_dim']])

            weight = tf.get_variable('w_{}'.format(f_sparse.name), dtype = tf.float32, initializer = init)

            embedding_input.append( tf.matmul(sparse_input, weight) )

        dense = tf.concat(embedding_input, axis=1, name = 'embedding_concat')

        # if treat numeric feature as dense feature, then concatenate with embedding. else concatenate wtih sparse input
        if params['numeric_handle'] == 'dense':
            numeric_input = tf.feature_column.input_layer(features, dense_columns)

            numeric_input = tf.layers.batch_normalization(numeric_input, center = True, scale = True, trainable =True,
                                                          training = (mode == tf.estimator.ModeKeys.TRAIN))
            dense = tf.concat([dense, numeric_input], axis = 1, name ='numeric_concat')

    with tf.variable_scope('MLP'):
        for i, unit in enumerate(params['hidden_units']):
            dense = tf.layers.dense(dense, units = unit, activation = 'relu', name = 'Dense_{}'.format(i))
            if mode == tf.estimator.ModeKeys.TRAIN:
                dense = tf.layers.dropout(dense, rate = params['dropout_rate'], training = (mode==tf.estimator.ModeKeys.TRAIN))

    with tf.variable_scope('output'):
        y = tf.layers.dense(dense, units=1, name = 'output')

    return y

Wide&Deep

Wide&Deep是在上述MLP的基础上加入了Wide部分。做者认为Deep的部分负责generalization既样本中未出现模式的泛化和模糊查询,就是上面的Embedding+MLP。wide负责memorization既样本中已有模式的记忆,是对离散特征和特征组合作Logistics Regression。Deep和Wide一块儿进行联合训练。网络

这样说可能不彻底准确,做者在文中也提到wide部分只是用来锦上添花,来帮助Deep增长那些在样本中频繁出现的模式在预测目标上的区分度。因此wide不须要是一个full-size模型,而更多须要业务上判断比较核心的特征和交叉特征。app

连续特征的处理

ctr模型大可能是在探讨稀疏离散特征的处理,那连续特征应该怎么处理呢?有几种处理方式框架

  1. 连续特征离散化处理,以后能够作embedding/onehot/cross
  2. 连续特征不作处理,直接和其余离散特征embedding后的vector拼接做为输入。这里要考虑对连续特征进行归一化处理, 否则会收敛的很慢。上面MLP尝试了BatchNorm,Wide&Deep则直接在feature_column里面作了归一化。
  3. 既做为连续特征输入,同时也作离散化和其余离散特征进行交互

连续特征离散化的优缺点
缺点dom

  1. 信息丢失,丢失多少信息要看桶分的咋样
  2. 平滑度降低,处于分桶边界的特征变更可能带来预测值比较大的波动

优势ide

  1. 加入非线性,多数状况下连续特征和目标之间都不是线性关系,而是在到达某个阈值对用户存在0/1的影响
  2. 更稳健,可有效避免连续特征中的极值/长尾问题
  3. 特征交互,作离散特征处理后方便进一步作cross特征
  4. 省事...,不须要再考虑啥正不正态要不要作归一化之类的

代码实现

def znorm(mean, std):
    def znorm_helper(col):
        return (col-mean)/std
    return znorm_helper

def build_features():
    f_onehot = []
    f_embedding = []
    f_numeric = []

    # categorical features
    for col, config in EMB_CONFIGS.items():
        ind = tf.feature_column.categorical_column_with_hash_bucket(col, hash_bucket_size = config['hash_size'])
        f_onehot.append( tf.feature_column.indicator_column(ind))
        f_embedding.append( tf.feature_column.embedding_column(ind, dimension = config['emb_size']) )

    # numeric features: both in numeric feature and bucketized to discrete feature
    for col, config in BUCKET_CONFIGS.items():
        num = tf.feature_column.numeric_column(col,
                                               normalizer_fn = znorm(NORM_CONFIGS[col]['mean'],NORM_CONFIGS[col]['std'] ))
        f_numeric.append(num)
        bucket = tf.feature_column.bucketized_column( num, boundaries=config )
        f_onehot.append(bucket)

    # crossed features
    for col1,col2 in combinations(f_onehot,2):
        # if col is indicator of hashed bucuket, use raw feature directly
        if col1.parents[0].name in EMB_CONFIGS.keys():
            col1 = col1.parents[0].name
        if col2.parents[0].name in EMB_CONFIGS.keys():
            col2 = col2.parents[0].name

        crossed = tf.feature_column.crossed_column([col1, col2], hash_bucket_size = 20)
        f_onehot.append(tf.feature_column.indicator_column(crossed))

    f_dense = f_embedding + f_numeric    #f_dense = f_embedding + f_numeric + f_onehot
    f_sparse = f_onehot     #f_sparse = f_onehot + f_numeric

    return f_sparse, f_dense
    
def build_estimator(model_dir):
    sparse_feature, dense_feature= build_features()

    run_config = tf.estimator.RunConfig(
        save_summary_steps=50,
        log_step_count_steps=50,
        keep_checkpoint_max = 3,
        save_checkpoints_steps =50
    )

    dnn_optimizer = tf.train.ProximalAdagradOptimizer(
                    learning_rate= 0.001,
                    l1_regularization_strength=0.001,
                    l2_regularization_strength=0.001
    )

    estimator = tf.estimator.DNNLinearCombinedClassifier(
        model_dir=model_dir,
        linear_feature_columns=sparse_feature,
        dnn_feature_columns=dense_feature,
        dnn_optimizer = dnn_optimizer,
        dnn_dropout = 0.1,
        batch_norm = False,
        dnn_hidden_units = [48,32,16],
        config=run_config )

    return estimator

CTR学习笔记&代码实现系列👇

https://github.com/DSXiangLi/CTR学习

CTR学习笔记&代码实现1-深度学习的前奏LR->FFM

参考材料

  1. Weinan Zhang, Tianming Du, and Jun Wang. Deep learning over multi-field categorical data - - A case study on user response prediction. In ECIR, 2016.
  2. Cheng H T, Koc L, Harmsen J, et al. Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. ACM, 2016: 7-10
  3. https://www.jiqizhixin.com/articles/2018-07-16-17
  4. https://cloud.tencent.com/developer/article/1063010
  5. https://github.com/shenweichen/DeepCTR
相关文章
相关标签/搜索