基于X11-ARIMA模型的时间序列分析

**对时间序列模型进行优化
1.首先将时序数据分解为趋势份量,季节周期份量和随机份量
2.对趋势份量使用ARIMA模型进行拟合
3.季节周期份量则使用历史同期份量
4.随机份量则是使用历史同类的平均值进行预测
5.使用面向对象的方式,构造模型的类,自动选取最优的模型参数**css

import numpy as np
import pandas as pd
from datetime import datetime
import matplotlib.pylab  as plt
from statsmodels.tsa.stattools import adfuller
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from statsmodels.graphics.tsaplots import plot_acf,plot_pacf 
import sys
from dateutil.relativedelta import relativedelta
from  copy import deepcopy
from statsmodels.tsa.arima_model import ARMA
import warnings
warnings.filterwarnings("ignore")```

定义ARIMA的类

class arima_model:函数

def __init__(self,ts,maxLag = 9):
    self.data_ts = ts
    self.resid_ts = None
    self.predict_ts = None
    self.forecast_ts = None
    self.maxLag = maxLag
    self.p = maxLag
    self.q = maxLag
    self.properModel = None
    self.bic = sys.maxsize

#计算最优的ARIMA模型,将相关结果赋给相应的属性
def get_proper_model(self):
    self._proper_model()
    self.predict_ts = deepcopy(self.properModel.predict())
    self.resid_ts = deepcopy(self.properModel.resid)
    self.forecast_ts = deepcopy(self.properModel.forecast())

#对于给定范围内的p,q计算拟合得最好的arima模型,这里是对差分好的数据进行拟合,故差分恒为0
def _proper_model(self):
    for p in np.arange(self.maxLag):
        for q in np.arange(self.maxLag):
            model = ARMA(self.data_ts, order = (p,q))
            try:
                results_ARMA = model.fit(disp = -1, method = "css")
            except:
                continue
            bic = results_ARMA.bic
            
            if  bic < self.bic:
                self.p = p
                self.q = q
                self.properModel = results_ARMA
                self.bic = bic
                self.resid_ts = deepcopy(self.properModel.resid)
                self.predict_ts = self.properModel.predict()

#参数肯定模型
def certain_model(self,p,q):
    model = ARMA(self.data_ts,order = (p,q))
    try:
        self.properModel = model.fit(disp = -1,method = "css")
        self.p = p
        self.q = q
        self.bic = self.properModel.bic
        self.predict_ts = self.properModel.predict()
        self.resid_ts = deepcopy(self.properModel.resid)
        self.forecast_ts = self.properModel.forecast()
    except:
        print ("You can not fit the model with this parameter p,q")```
dateparse = lambda dates:pd.datetime.strptime(dates,'%Y-%m')
#paese_dates指定日期在哪列 index_dates将年月日的哪一个做为索引,date_parser将字符串转为日期
f = open("D:\福建\AirPassengers.csv")
data = pd.read_csv(f, parse_dates=["Month"],index_col="Month",date_parser=dateparse)
ts = data["#Passengers"]
def draw_ts(timeSeries,title):
    f = plt.figure(facecolor = "white")
    timeSeries.plot(color = "blue")
    plt.title(title)
    plt.show()

def seasonal_decompose(ts):
    from statsmodels.tsa.seasonal import seasonal_decompose
    decomposition = seasonal_decompose(ts, model = "multiplicative")
    trend = decomposition.trend
    seasonal = decomposition.seasonal
    residual = decomposition.resid
    draw_ts(ts,'origin')
    draw_ts(trend,'trend')
    draw_ts(seasonal,'seasonal')
    draw_ts(residual,'residual')
    return trend,seasonal,residual
def testStationarity(ts):
    dftest = adfuller(ts)
    # 对上述函数求得的值进行语义描述
    dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags Used','Number of Observations Used'])
    for key,value in dftest[4].items():
        dfoutput['Critical Value (%s)'%key] = value
#     print ("dfoutput",dfoutput)        
    return dfoutput
ts_log = np.log(ts)
trend,seasonal,residual = seasonal_decompose(ts_log)
seasonal_arr = seasonal
residual = residual.dropna()
residual_mean = np.mean(residual.values)
trend = trend.dropna()

代码运行以下:
图片描述
图片描述
图片描述
图片描述优化

#将原始数据分解为趋势份量,季节周期和随机份量
#对trend进行平稳定检验
testStationarity(trend)

图片描述

#对序列进行平稳定处理
trend_diff_1 = trend.diff(1)
trend_diff_1 = trend_diff_1.dropna()
draw_ts(trend_diff_1,'trend_diff_1')
testStationarity(trend_diff_1)
trend_diff_2 = trend_diff_1.diff(1)
trend_diff_2 = trend_diff_2.dropna()
draw_ts(trend_diff_2,'trend_diff_2')
testStationarity(trend_diff_2)
#使用模型拟合趋势份量
#使用模型参数的自动识别
model = arima_model(trend_diff_2)
model.get_proper_model()
predict_ts = model.properModel.predict()

#还原数据,由于使用的是乘法模型,将趋势份量还原以后须要乘以对应的季节周期份量和随机份量
diff_shift_ts = trend_diff_1.shift(1)
diff_recover_1 = predict_ts.add(diff_shift_ts)
rol_shift_ts = trend.shift(1)
diff_recover = diff_recover_1.add(rol_shift_ts)
recover = diff_recover['1950-1':'1960-6'] * seasonal_arr['1950-1':'1960-6'] * residual_mean
log_recover = np.exp(recover)
draw_ts(log_recover,'log_recover')

图片描述

#模型评价
ts_quantum = ts['1950-1':'1960-6']
plt.figure(facecolor = "white")
log_recover.plot(color = "blue",label = "Predict")
ts_quantum.plot(color = "red", label = "Original")
plt.legend(loc = "best")
plt.title("RMSE %.4f" % np.sqrt(sum((ts_quantum - log_recover) ** 2) / ts_quantum.size))
plt.show()

图片描述

相关文章
相关标签/搜索