Generative Adversarial Nets(生成对抗网络)

Generative Adversarial Nets(生成对抗网络)   生成对抗网络通过一个对抗步骤来估计生成模型,它同时训练两个模型:一个是获取数据分布的生成模型$G$,一个是估计样本来自训练数据而不是$G$的概率的判别模型$D$。$G$的训练步骤就是最大化$D$犯错的概率。这个框架对应于一个二元极小极大博弈。在任意函数$G$和$D$的空间中,存在唯一解,$G$恢复数据分布,$D$总是等于1
相关文章
相关标签/搜索