SparkML模型选择(超参数调整)与调优

Spark ML模型选择与调优 本文主要讲解如何使用Spark MLlib的工具去调优ML算法和Pipelines。内置的交叉验证和其他工具允许用户优化算法和管道中的超参数。 模型选择(又称为超参数调整) ML中的一个重要任务是模型选择,或者使用数据来找出给定任务的最佳模型或参数。这也被称为调优。可以针对单个独立的Estimator进行调优,例如LogisticRegression,也可以针对整个
相关文章
相关标签/搜索