用管道简化工做流算法
使用k折交叉验证评估模型性能app
使用学习和验证曲线调试算法dom
经过网格搜索进行超参数调优机器学习
比较不一样的性能评估指标ide
1. 加载基本工具库工具
import numpy as npimport pandas as pdimport matplotlib.pyplot as plt%matplotlib inlineplt.style.use("ggplot")import warningswarnings.filterwarnings("ignore")
2. 加载数据,并作基本预处理性能
# 加载数据df = pd.read_csv("http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data",header=None)# 作基本的数据预处理from sklearn.preprocessing import LabelEncoder
X = df.iloc[:,2:].valuesy = df.iloc[:,1].valuesle = LabelEncoder() #将M-B等字符串编码成计算机能识别的0-1y = le.fit_transform(y)le.transform(['M','B'])# 数据切分8:2from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,stratify=y,random_state=1)
3. 把全部的操做所有封在一个管道pipeline内造成一个工做流:标准化+PCA+逻辑回归
学习
完成以上操做,共有两种方式:
优化
方式1:make_pipeline编码
# 把全部的操做所有封在一个管道pipeline内造成一个工做流:## 标准化+PCA+逻辑回归
### 方式1:make_pipelinefrom sklearn.preprocessing import StandardScalerfrom sklearn.decomposition import PCAfrom sklearn.linear_model import LogisticRegressionfrom sklearn.pipeline import make_pipeline
pipe_lr1 = make_pipeline(StandardScaler(),PCA(n_components=2),LogisticRegression(random_state=1))pipe_lr1.fit(X_train,y_train)y_pred1 = pipe_lr.predict(X_test)print("Test Accuracy: %.3f"% pipe_lr1.score(X_test,y_test))
Test Accuracy: 0.956方式2:Pipeline
# 把全部的操做所有封在一个管道pipeline内造成一个工做流:## 标准化+PCA+逻辑回归
### 方式2:Pipelinefrom sklearn.preprocessing import StandardScalerfrom sklearn.decomposition import PCAfrom sklearn.linear_model import LogisticRegressionfrom sklearn.pipeline import Pipeline
pipe_lr2 = Pipeline([['std',StandardScaler()],['pca',PCA(n_components=2)],['lr',LogisticRegression(random_state=1)]])pipe_lr2.fit(X_train,y_train)y_pred2 = pipe_lr2.predict(X_test)print("Test Accuracy: %.3f"% pipe_lr2.score(X_test,y_test))
Test Accuracy: 0.956
# 评估方式1:k折交叉验证评估方式2:分层k折交叉验证
from sklearn.model_selection import cross_val_score
scores1 = cross_val_score(estimator=pipe_lr,X = X_train,y = y_train,cv=10,n_jobs=1)print("CV accuracy scores:%s" % scores1)print("CV accuracy:%.3f +/-%.3f"%(np.mean(scores1),np.std(scores1)))
# 评估方式2:分层k折交叉验证
from sklearn.model_selection import StratifiedKFold
kfold = StratifiedKFold(n_splits=10,random_state=1).split(X_train,y_train)scores2 = []for k,(train,test) in enumerate(kfold): pipe_lr.fit(X_train[train],y_train[train]) score = pipe_lr.score(X_train[test],y_train[test]) scores2.append(score) print('Fold:%2d,Class dist.:%s,Acc:%.3f'%(k+1,np.bincount(y_train[train]),score))print('\nCV accuracy :%.3f +/-%.3f'%(np.mean(scores2),np.std(scores2)))
若是模型过于复杂,即模型有太多的自由度或者参数,就会有过拟合的风险(高方差);而模型过于简单,则会有欠拟合的风险(高误差)。
1. 用学习曲线诊断误差与方差
# 用学习曲线诊断误差与方差from sklearn.model_selection import learning_curve
pipe_lr3 = make_pipeline(StandardScaler(),LogisticRegression(random_state=1,penalty='l2'))train_sizes,train_scores,test_scores = learning_curve(estimator=pipe_lr3,X=X_train,y=y_train,train_sizes=np.linspace(0.1,1,10),cv=10,n_jobs=1)train_mean = np.mean(train_scores,axis=1)train_std = np.std(train_scores,axis=1)test_mean = np.mean(test_scores,axis=1)test_std = np.std(test_scores,axis=1)plt.plot(train_sizes,train_mean,color='blue',marker='o',markersize=5,label='training accuracy')plt.fill_between(train_sizes,train_mean+train_std,train_mean-train_std,alpha=0.15,color='blue')plt.plot(train_sizes,test_mean,color='red',marker='s',markersize=5,label='validation accuracy')plt.fill_between(train_sizes,test_mean+test_std,test_mean-test_std,alpha=0.15,color='red')plt.xlabel("Number of training samples")plt.ylabel("Accuracy")plt.legend(loc='lower right')plt.ylim([0.8,1.02])plt.show()
# 用验证曲线解决欠拟合和过拟合from sklearn.model_selection import validation_curve
pipe_lr3 = make_pipeline(StandardScaler(),LogisticRegression(random_state=1,penalty='l2'))param_range = [0.001,0.01,0.1,1.0,10.0,100.0]train_scores,test_scores = validation_curve(estimator=pipe_lr3,X=X_train,y=y_train,param_name='logisticregression__C',param_range=param_range,cv=10,n_jobs=1)train_mean = np.mean(train_scores,axis=1)train_std = np.std(train_scores,axis=1)test_mean = np.mean(test_scores,axis=1)test_std = np.std(test_scores,axis=1)plt.plot(param_range,train_mean,color='blue',marker='o',markersize=5,label='training accuracy')plt.fill_between(param_range,train_mean+train_std,train_mean-train_std,alpha=0.15,color='blue')plt.plot(param_range,test_mean,color='red',marker='s',markersize=5,label='validation accuracy')plt.fill_between(param_range,test_mean+test_std,test_mean-test_std,alpha=0.15,color='red')plt.xscale('log')plt.xlabel("Parameter C")plt.ylabel("Accuracy")plt.legend(loc='lower right')plt.ylim([0.8,1.02])plt.show()
(注意参数与超参数的区别:参数能够经过优化算法进行优化,如逻辑回归的系数;超参数是不能用优化模型进行优化的,如正则话的系数。)
方式1:网格搜索GridSearchCV()# 方式1:网格搜索GridSearchCV()from sklearn.model_selection import GridSearchCVfrom sklearn.svm import SVCimport time
start_time = time.time()pipe_svc = make_pipeline(StandardScaler(),SVC(random_state=1))param_range = [0.0001,0.001,0.01,0.1,1.0,10.0,100.0,1000.0]param_grid = [{'svc__C':param_range,'svc__kernel':['linear']},{'svc__C':param_range,'svc__gamma':param_range,'svc__kernel':['rbf']}]gs = GridSearchCV(estimator=pipe_svc,param_grid=param_grid,scoring='accuracy',cv=10,n_jobs=-1)gs = gs.fit(X_train,y_train)end_time = time.time()print("网格搜索经历时间:%.3f S" % float(end_time-start_time))print(gs.best_score_)print(gs.best_params_)
方式2:随机网格搜索RandomizedSearchCV()
# 方式2:随机网格搜索RandomizedSearchCV()from sklearn.model_selection import RandomizedSearchCVfrom sklearn.svm import SVCimport time方式3 :嵌套交叉验证
start_time = time.time()pipe_svc = make_pipeline(StandardScaler(),SVC(random_state=1))param_range = [0.0001,0.001,0.01,0.1,1.0,10.0,100.0,1000.0]param_grid = [{'svc__C':param_range,'svc__kernel':['linear']},{'svc__C':param_range,'svc__gamma':param_range,'svc__kernel':['rbf']}]# param_grid = [{'svc__C':param_range,'svc__kernel':['linear','rbf'],'svc__gamma':param_range}]gs = RandomizedSearchCV(estimator=pipe_svc, param_distributions=param_grid,scoring='accuracy',cv=10,n_jobs=-1)gs = gs.fit(X_train,y_train)end_time = time.time()print("随机网格搜索经历时间:%.3f S" % float(end_time-start_time))print(gs.best_score_)print(gs.best_params_)
# 方式3:嵌套交叉验证from sklearn.model_selection import GridSearchCVfrom sklearn.svm import SVCfrom sklearn.model_selection import cross_val_scoreimport time5、比较不一样的性能评估指标
start_time = time.time()pipe_svc = make_pipeline(StandardScaler(),SVC(random_state=1))param_range = [0.0001,0.001,0.01,0.1,1.0,10.0,100.0,1000.0]param_grid = [{'svc__C':param_range,'svc__kernel':['linear']},{'svc__C':param_range,'svc__gamma':param_range,'svc__kernel':['rbf']}]gs = GridSearchCV(estimator=pipe_svc, param_grid=param_grid,scoring='accuracy',cv=2,n_jobs=-1)scores = cross_val_score(gs,X_train,y_train,scoring='accuracy',cv=5)end_time = time.time()print("嵌套交叉验证:%.3f S" % float(end_time-start_time))print('CV accuracy :%.3f +/-%.3f'%(np.mean(scores),np.std(scores)))
有时候,准确率不是咱们惟一须要考虑的评价指标,由于有时候会存在各种预测错误的代价不同。例如:在预测一我的的肿瘤疾病的时候,若是病人A真实得肿瘤可是咱们预测他是没有肿瘤,跟A真实是健康可是预测他是肿瘤,两者付出的代价很大区别(想一想为何)。因此咱们须要其余更加普遍的指标:
1. 绘制混淆矩阵# 绘制混淆矩阵from sklearn.metrics import confusion_matrix
pipe_svc.fit(X_train,y_train)y_pred = pipe_svc.predict(X_test)confmat = confusion_matrix(y_true=y_test,y_pred=y_pred)fig,ax = plt.subplots(figsize=(2.5,2.5))ax.matshow(confmat, cmap=plt.cm.Blues,alpha=0.3)for i in range(confmat.shape[0]): for j in range(confmat.shape[1]): ax.text(x=j,y=i,s=confmat[i,j],va='center',ha='center')plt.xlabel('predicted label')plt.ylabel('true label')plt.show()
2. 各类指标的计算
# 各类指标的计算from sklearn.metrics import precision_score,recall_score,f1_score
print('Precision:%.3f'%precision_score(y_true=y_test,y_pred=y_pred))print('recall_score:%.3f'%recall_score(y_true=y_test,y_pred=y_pred))print('f1_score:%.3f'%f1_score(y_true=y_test,y_pred=y_pred))
3. 将不一样的指标与GridSearch结合
# 将不一样的指标与GridSearch结合from sklearn.metrics import make_scorer,f1_scorescorer = make_scorer(f1_score,pos_label=0)gs = GridSearchCV(estimator=pipe_svc,param_grid=param_grid,scoring=scorer,cv=10)gs = gs.fit(X_train,y_train)print(gs.best_score_)print(gs.best_params_)
4. 绘制ROC曲线
# 绘制ROC曲线from sklearn.metrics import roc_curve,aucfrom sklearn.metrics import make_scorer,f1_scorescorer = make_scorer(f1_score,pos_label=0)gs = GridSearchCV(estimator=pipe_svc,param_grid=param_grid,scoring=scorer,cv=10)y_pred = gs.fit(X_train,y_train).decision_function(X_test)#y_pred = gs.predict(X_test)fpr,tpr,threshold = roc_curve(y_test, y_pred) ###计算真阳率和假阳率roc_auc = auc(fpr,tpr) ###计算auc的值plt.figure()lw = 2plt.figure(figsize=(7,5))plt.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc) ###假阳率为横坐标,真阳率为纵坐标作曲线plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')plt.xlim([-0.05, 1.0])plt.ylim([-0.05, 1.05])plt.xlabel('False Positive Rate')plt.ylabel('True Positive Rate')plt.title('Receiver operating characteristic ')plt.legend(loc="lower right")plt.show()