吴恩达神经网络Course——week4

一个多层的神经网络,结构是输入层->隐藏层->隐藏层->···->隐藏层->输出层**,在每一层中,我会首先计算Z = np.dot(W,A) + b,这叫做【linear_forward】,然后再计算A = relu(Z) 或者 A = sigmoid(Z),这叫做【linear_activation_forward】,合并起来就是这一层的计算方法,所以每   初始化网络参数 前向传播 2.1
相关文章
相关标签/搜索