[监督学习]线性判别式分析(LDA)

线性判别式算法(LDA) LDA算法和PCA算法都是一种数据压缩的算法,由于前者属于无监督学习而后者属于监督学习,根据任务的不同,因而它们的侧重点不同,PCA算法关心的是原数据与新数据之间的最小重构误差,而LDA算法关注的是数据压缩后类别间的区分度。 从上图中可以看出,LDA算法希望找到一个投影的方向,使得类别间中心点尽可能分散,而每一类的样本尽可能聚集,如果说PCA算法的优化准则是最小重构误差,
相关文章
相关标签/搜索