JavaShuo
栏目
标签
Stereo Parallel Tracking and Mapping for robot localization(S-PTAM)
时间 2020-12-30
标签
slam
计算机视觉
栏目
快乐工作
繁體版
原文
原文链接
机器人定位的立体并行跟踪与映射 S-PTAM(2015) 1. 介绍 2. 方法 1. 跟踪 2. 映射 3. 实验 1. MIT数据集 2. KITTI数据集 1. 介绍 按照并行跟踪与映射(PTAM)的方法,S-PTAM将问题分为两个主要的并行任务:摄像机跟踪和地图优化。跟踪线程匹配特征、创建新点并估计每个新帧的相机姿势,映射线程迭代地细化组成地图的附近点地标。 S-PTAM特点: 1)利用S
>>阅读原文<<
相关文章
1.
Multi-Camera Parallel Tracking and Mapping (MCPTAM)
2.
Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping ,2019
3.
[SLAM] 01. "Simultaneous Localization and Mapping"
4.
Online Object Detection and Localization on Stereo Visual SLAM System
5.
阅读《A Survey of Monocular Simultaneous Localization and Mapping》
6.
论文笔记_SLAM_Review_Visual simultaneous localization and mapping: a survey
7.
Localization and Mapping using Instance-specific Mesh Models 2019
8.
Stereo Vision-based Semantic 3D Object and Ego-motion Tracking for Autonomous Driving
9.
Localization and Mapping using Instance-specific Mesh Models
10.
论文《FLAME:Feature-Likeilhood Based Mapping and Localization for Autonomous Vehicles》阅读总结
更多相关文章...
•
Swift for 循环
-
Swift 教程
•
Scala for循环
-
Scala教程
•
RxJava操作符(七)Conditional and Boolean
•
Java 8 Stream 教程
相关标签/搜索
localization
stereo
mapping
tracking
parallel
robot
Eye-Tracking
1.parallel
action.....and
between...and
快乐工作
Hibernate教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
正确理解商业智能 BI 的价值所在
2.
解决梯度消失梯度爆炸强力推荐的一个算法-----LSTM(长短时记忆神经网络)
3.
解决梯度消失梯度爆炸强力推荐的一个算法-----GRU(门控循环神经⽹络)
4.
HDU4565
5.
算概率投硬币
6.
密码算法特性
7.
DICOMRT-DiTools:clouddicom源码解析(1)
8.
HDU-6128
9.
计算机网络知识点详解(持续更新...)
10.
hods2896(AC自动机)
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Multi-Camera Parallel Tracking and Mapping (MCPTAM)
2.
Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping ,2019
3.
[SLAM] 01. "Simultaneous Localization and Mapping"
4.
Online Object Detection and Localization on Stereo Visual SLAM System
5.
阅读《A Survey of Monocular Simultaneous Localization and Mapping》
6.
论文笔记_SLAM_Review_Visual simultaneous localization and mapping: a survey
7.
Localization and Mapping using Instance-specific Mesh Models 2019
8.
Stereo Vision-based Semantic 3D Object and Ego-motion Tracking for Autonomous Driving
9.
Localization and Mapping using Instance-specific Mesh Models
10.
论文《FLAME:Feature-Likeilhood Based Mapping and Localization for Autonomous Vehicles》阅读总结
>>更多相关文章<<