深度学习|卷积神经网络(CNN)介绍(前篇)

01 — 回顾 以上推送了神经网络相关的介绍性内容和相关的基础理论,包括: 神经网络的基本结构:输入层,隐含层,输出层; 批随机梯度下降算法(mini-batch SGD); 前向传播,激活函数; 反向传播求参数的偏导,四个公式; 手写字数据集的mini-batch SGD 源码实现(借助BP算法求参数偏导); 对隐藏层的感性认识,神经网络的隐含层是如何从具体到抽象层层构建的。 以上阐述了深度神经
相关文章
相关标签/搜索