深度学习|卷积神经网络(CNN)介绍(后篇)

01 — 回顾 昨天介绍了CNN的卷积操作,能减少权重参数的个数,卷积操作涉及到三个超参数: 深度(Depth) 步长(Stride) 零填充(Zero-padding) 还有一种运算,叫做求内积,关于这部分的总结,请参考: 深度学习|卷积神经网络(CNN)介绍(前篇) 下面,阐述CNN剩下的两种操作,ReLU,Pooling。 02 — ReLU操作 CNN用的激活函数不是Sigmoid函数,大
相关文章
相关标签/搜索