SLAM中的BA优化

SLAM中的BA优化 SLAM中的BA优化,先根据相机模型和A,B图像特征匹配好的像素坐标,求出A图像上的像素坐标对应的归一化的空间点坐标,然后根据该空间点的坐标计算重投影到B图像上的像素坐标,重投影的像素坐标(估计值)与匹配好的B图像上的像素坐标(测量值),不会完全重合,BA的目的就是每一个匹配好的特征点建立方程,然后联立,形成超定方程,解出最优的位姿矩阵或空间点坐标(两者可以同时优化)。 根据
相关文章
相关标签/搜索