交叉熵损失函数的优点

利用一些饱和激活函数的如sigmoid激活时,假如利用均方误差损失,那么损失函数向最后一层的权重传递梯度时,梯度公式为 可见梯度与最后一层的激活函数的导数成正比,因此,如果起始输出值比较大,也即激活函数的导数比较小,那么整个梯度幅度更新幅度都比较小,收敛时间很长。若一开始输出值比较小那么更新速度比较好,收敛也快,因此不稳定。且与输出值a与真实值的误差成正比。 再看损失函数改成交叉熵损失时: 此时损
相关文章
相关标签/搜索