咱们知道,一个算法学习能够成功预测,一个很重要的关键是目标问题隐含了特定模式的先验假设(先验知识),而算法要作的惟一的事情,就是捕获这种先验假设,即经过咱们熟悉的模型参数的形式来固话一个生成式或者一个判别式。html
从一个具体的虚拟的例子开始提及,可是这个例子和咱们再实际工程项目中遇到的全部问题,本质上是同样的。python
有一个广告公司,每个月会投入必定的广告费,用于提高其销售额,同时,财务部门收集了历史上每月投入的广告费和销售额的结果:算法
这是一个很是具体的问题,项目的目标是须要开发一个预测器,帮助决策层判断未来须要投入多少广告费,而且对预期的销售额收入有一个预期判断。app
算法是一个数学的运算和求导得极值过程,要求模型输入的是一个数字化的向量,可是现实生活中的例子不必定都是纯数字化的,固然这个例子自己足够简单,输入和要预测的结果自己已是数字了,那咱们能够直接进行数字化编码,可是在其余领域利于NLP领域,如何进行数字化特征编码就是一个足够引发慎重思考的问题了。dom
在这个销售预测的例子中,咱们将输入样本编码为 1 维向量 X,数值即广告费的数值。预测的结果编码为 1 维的向量 Y,即销售额。机器学习
咱们用 X 表示广告费,用 Y 表示销售额,这种从现实世界的具体物体,到用数值表示的抽象数值化变换,咱们称之为特征函数,简称特征。函数
若是 X 是向量空间的一个子集,每个有时候称为特征向量。学习
如何将现实世界物体编码为输入空间 X 的方式,对理解咱们如何利用问题相关的先验知识,是很是重要的。编码
在完成特征数字化编码以后,咱们可能会遇到一些问题atom
固然,在本文的销售额预测的例子中没有这个状况,可是咱们假设咱们引入的特征还有例如当月季节、当月气温、当月流行热点等上千个维度,由于其实这个现象在实际项目中是很常见的,因为物体自己(例如NLP文本)或者咱们出于“多多益善”的目的常常会尽量地将咱们认为对最终预测有帮助的特征维度都抽取出来,做为物体的特征向量。
这自己也没有太多问题,可是过多的特征会增大算法运算过程当中的CPU和内存需求。
并且极可能还会致使模型欠拟合,这是由于在一些场景下,最终决定结果判断的可能只能其中3-5个核心特征,输入太多的无关特征,可能致使输入了一些“假关联”,这些“假关联”只是刚好在 这批训练样本集中呈现出了某种相关性,但其实其背后并无隐含任何真实世界的统计规律。
若是模型在训练的过程当中,“不当心”错误地引入了这些“假关联”特征,那么能够想象,模型的预测泛化能力是会大打折扣的。
这也是一个很常见的问题,线性可分看起来像是实验课上作demo的场景,在大多数的工程项目中,咱们的特征向量都是在当前空间线性不可分的。例以下面这张图:
红星和黑圈没法经过一个线性函数直接进行二分类区分。这个时候其实有两个办法:
1. 选择用非线性分类器进行训练: 例如adaboost、decision tree、dnn这些,但其实本质上,这些模型在训练生成模型的过程当中,已经隐含了基于线性分类器组合获得非线性分类器的步骤了。 2. 对原始特征进行扭曲变化,将其转化到另外一个高纬度的新特征空间中: 例如基于kernel trick的SVM就是这种状况,经过在原空间样本 X 到希尔伯特空间的特征映射上学习每个二分类器来实现分类
特征选择,是另外一种应用先验知识来处理问题的方法。这是咱们本文要重点讨论的一个主题。
在理状况下,咱们能够尝试 d 个特征的全部 k 个特征组合,而后选择最优预测结果对应的特征子集。然而,这种穷尽搜索方法一般在计算上是不可行的。
在实际工程中使用的算法中,咱们经常采用一些启发式,迭代式的搜索方法来尽量地得到一个足够好的特征子集。
咱们知道,虽然有不少能够尝试的共同的特征学习方法,可是“没有免费的午饭”理论指出不存在一种能处理全部问题的极端特征学习期,任何特征学习期均可能在某些问题上失败。
换句话说,每个特征学习期的成功依赖于数据分布的某种先验假设形式(有时这种先验假设可能不那么明显)。
不一样算法的区别在于可否成功捕获这种先验假设,同时也要明白,不一样的算法,其拟合能力是不一样的,可能对同一份训练数据,会发生欠拟或者过拟。
Relevant Link:
https://www.jianshu.com/p/f485dc676e1c
滤波器方法多是最简单的特征选择方法,在滤波方法中,咱们将某些特征看做独立于其余特征,而后根据一些质量度量标准来估计这些独立特征,而后选择 k 个得到最高评分的特征(此外也能够依据最好的评分肯定特征的数量)
一种最直接的方法是依据预测期的错误率来得到特征的评分。
为了说明这个问题,咱们考虑采用平方损失的线性回归问题。令
表示 m 个训练样本第 j 个特征值造成的向量,令表示 m 个样本的目标值。
仅仅使用第 j 个特征的经验风险最小化线性预测期的经验平方损失是:
为了求解这个最小化问题,令表示特征的平均值,令
表示目标的平均值。显然:
等式右边对 b 求导,令导数等于0,咱们获得 b = 0。
一样,对 a 求导,当 b = 0时,咱们获得
将 a,b 的值代入目标函数,咱们获得,经过选择右式的特征组合,咱们的目的是让左式的损失函数值最小。
依据最小平方损失对特征排序,等同于依据下面评分的绝对值进行排序(高分表示好的特征):
上面的表达式被称为皮尔森相关系数。分子表示第 j 个特征和目标值方差的经验估计,而分母表示第 j 个特征方差
乘上目标值所得方差经验估计的均方根。
皮尔森相关系数的取值范围为【-1,1】,这里若是皮尔森相关系数等于 1 或者 -1,表示 v 和 y 之间有线性相关映射关系,且经验风险等于0。
若是皮尔森相关系数等于0,表示 v 到 y 的最优线性映射为各个维度都等于0,这就是说单独只用 v 不足以预测 y。
可是这并不必定意味着 v 是一个坏的特征,好比可能出现这种状况,v 和其余特征组合起来可以很好地预测 y。
考虑一个简单的例子,目标经过函数来产生。
假定 x1 是由上的均匀分布产生,而
,这里 z 也是由
上的均匀分布产生。
那么,,咱们能够获得
所以,对于足够大的训练集,第一个特征的皮尔森相关系数可能等于0,所以它可能不被选择,然而,若是不知道第一个特征,没有函数可以很好地预测目标值。
Pearson Correlation速度快、易于计算,常常在拿到数据(通过清洗和特征提取以后的)以后第一时间就执行。Scipy的pearsonr方法可以同时计算相关系数和p-value。
#!/usr/bin/python import numpy as np from scipy.stats import pearsonr np.random.seed(0) size = 300 x = np.random.normal(0, 1, size) print "Lower noise", pearsonr(x, x + np.random.normal(0, 1, size)) print "Higher noise", pearsonr(x, x + np.random.normal(0, 10, size))
这个例子中,咱们比较了变量在加入噪音以前和以后的差别。
当噪音比较小的时候,p-value接近1,改变后的变量和改变前的变量相关性很强;
当噪音比较大的时候,p-value下降,改变后的变量和改变前的变量相关性下降。
Pearson相关系数的一个明显缺陷是,做为特征排序机制,他只对线性关系敏感。若是关系是非线性的,即使两个变量具备一一对应的关系,Pearson相关性也可能会接近0。
#!/usr/bin/python import numpy as np from scipy.stats import pearsonr x = np.random.uniform(-1, 1, 100000) print pearsonr(x, x**2)[0]
卡方检验是一种用途很广的计数资料的假设检验方法。它属于非参数检验的范畴,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析。
其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。
卡方检验(chi-square test),也叫做χ2检验。卡方检验有多种方法,最著名的就是皮尔逊卡方检验,也是卡尔·皮尔森提出。咱们一般用卡方来检测两个变量or样本的独立性。
卡方检验的理论假设是:一个样本中已发生事件的次数分配会遵照某个特定的理论分配。
一般的讲:观测频数跟实际频数应该没有区别,除非两个变量不是独立的。举个例子:XX公司不一样部门职员的性别跟部门二者是独立的么?很明显不是哦。这儿咱们的指望男女比例是1.05:1,可是在IT研发部分,比例多是3:1,在HR、客服等部门,比率多是1:3了。所以这儿的观测值就跟实际值不一致,咱们就能够说两个不是独立的。
下面的表格将实验者分红了2组,随机变量分别为:是否和牛奶、感冒人数。咱们如今但愿经过卡方检验来揭示这两个变量之间是否具备相关性,即它们之间是否存在依赖推导。
感冒人数 | 未感冒人数 | 合计 | 感冒率 | |
喝牛奶组 | 43 | 96 | 139 | 30.94% |
不喝牛奶组 | 28 | 84 | 112 | 25.00% |
合计 | 71 | 180 | 251 | 28.29% |
经过简单的统计咱们得出喝牛奶组和不喝牛奶组的感冒率为30.94%和25.00%,二者的差异多是抽样偏差致使,也有多是牛奶对感冒率真的有影响。
为了肯定真实缘由,咱们先假设喝牛奶对感冒发病率是没有影响的,即喝牛奶喝感冒时独立无关的。
因此咱们能够得出感冒的发病率实际是(43+28)/(43+28+96+84)= 28.29%
这一步实际上里隐含了条件独立性假设,即将另外一个随机变量视为无任何影响,无任何依赖推导,直接计算边缘条件几率。
因此,理论的四格表应该以下表所示:
感冒人数 | 未感冒人数 | 合计 | |
喝牛奶组 | 139*0.2829 = 39.3231 | 139*(1-0.2829) = 99.6769 | 139 |
不喝牛奶组 | 112*0.2829 = 31.6848 | 112*(1-0.2829) = 80.3152 | 112 |
合计 | 71 | 180 | 251 |
若是喝牛奶喝感冒真的是独立无关的,那么四格表里的理论值和实际值差异应该会很小。
卡方检验的计算公式为:,其中,A为实际值,T为理论值。
x2用于衡量实际值与理论值的差别程度(也就是卡方检验的核心思想),包含了如下两个信息:
1. 实际值与理论值误差的绝对大小(因为平方的存在,差别是被放大的) 2. 差别程度与理论值的相对大小
上面牛奶的的例子咱们计算得:
卡方 = (43 - 39.3231)平方 / 39.3231 + (28 - 31.6848)平方 / 31.6848 + (96 - 99.6769)平方 / 99.6769 + (84 - 80.3152)平方 / 80.3152 = 1.077
上一步咱们获得了卡方的值 = 1.077,可是这个值意味着什么呢?如何经过卡方的值来判断喝牛奶和感冒是否真的是独立无关的?也就是说,怎么知道无关性假设是否可靠?
基本上来讲:
卡方值越大,假设成立的几率就越小,即随机变量间相关性越大;
卡方值越小,假设成立的几率就越大,即随机变量间相关性越小。
下面是卡方分布的临界值表。
表格里的值表明着:若是卡方值大于对应的阈值,则至少有对应的几率,咱们的假设是成立的。
而具体应该查表格的哪一行,这里须要用到一个自由度的概念,自由度等于:F = (行数 - 1) * (列数 - 1)。对这个例子来讲,自由度F = 1 * 1 = 1。
在牛奶的这个例子中,对应的是F = 1,即咱们须要查第一行。
咱们计算获得的卡方检验值为 1.077,介于P(0.1)和P(0.5)这两栏之间,因此咱们能够说:
喝牛奶和感冒之间有至少50%的几率,是独立不相关的;
可是1.077超过了和P(0.9)和和P(0.95)的阈值,因此,“喝牛奶和感冒之间独立性假设有95%的几率成立”这句话是错了(有点绕,理解一下)。
因此,综上,因此喝牛奶和感冒独立不相关的假设不成立。
Relevant Link:
https://blog.csdn.net/snowdroptulip/article/details/78770088 https://blog.csdn.net/gdanskamir/article/details/54913233
以上就是经典的互信息公式了。想把互信息直接用于特征选择其实不是太方便:
1. 它不属于度量方式,也没有办法归一化,在不一样数据及上的结果没法作比较; 2. 对于连续变量的计算不是很方便(X和Y都是集合,x,y都是离散的取值),一般变量须要先离散化,而互信息的结果对离散化的方式很敏感。
最大信息系数克服了这两个问题。它首先寻找一种最优的离散化方式,而后把互信息取值转换成一种度量方式,取值区间在[0,1]。minepy提供了MIC功能。
反过头来看y=x^2这个例子,MIC算出来的互信息值为1(最大的取值)。
#!/usr/bin/python import numpy as np from minepy import MINE m = MINE() x = np.random.uniform(-1, 1, 10000) m.compute_score(x, x**2) print m.mic()
整体来讲,滤波评分方法的思想是:在必定的评价标准(损失函数)下,评估特征对最终预测标签结果准确性的贡献度。
Relevant Link:
https://blog.csdn.net/gdanskamir/article/details/54913233 https://www.cnblogs.com/hhh5460/p/5186226.html
贪婪选择是另外一个比较经常使用的特征选择方法。和滤波方法不一样,贪婪选择方法伴随着学习算法的过程,迭代地进行。
最简单的贪婪选择的例子是前向贪婪选择方法。
咱们从一个空集开始,而后逐步每次添加一个特征到选择的特征集。
给定当前选择的特征集,咱们遍历全部的
,而后在
特征集上应用学习算法。每个候选特征选择都取得一个不一样的预测器,咱们选择添加特征使得预测器的风险最小(经验最小化原则)。对应这个最小风险的候选特征就是本轮选择的特征。
持续喝个过程知道咱们选择了 k 个特征,这里 k 表示预先定义的能够承担的特征数,或者获得一个足够精度的预测器。
和前向贪婪选择方法相对的是,反向终止算法。咱们从所有特征组合的集合开始,而后逐步从特征集合中一次减小一个特征。
给定咱们当前选择的特征集。每一个这样的作法取得一个不一样的预测期,而后咱们选择去掉特征 i 是的预测期从特征集
获得最小的风险(在训练集或者验证集上)
这种方法的思路是直接使用你要用的有监督机器学习算法,针对每一个单独的特征和响应变量(标签值y)创建预测模型。
其实Pearson相关系数等价于线性回归里的标准化回归系数。
假如某个特征和响应变量之间的关系是非线性的,能够用基于树的方法(决策树、随机森林)、或者扩展的线性模型等。基于树的方法比较易于使用,由于他们对非线性关系的建模比较好,而且不须要太多的调试。但要注意过拟合问题,所以树的深度最好不要太大,再就是运用交叉验证。
咱们在著名的波士顿房价数据集上使用sklearn的随机森林回归给出一个单变量选择的例子:
#!/usr/bin/python import numpy as np from sklearn.cross_validation import cross_val_score, ShuffleSplit from sklearn.datasets import load_boston from sklearn.ensemble import RandomForestRegressor #Load boston housing dataset as an example boston = load_boston() X = boston["data"] Y = boston["target"] names = boston["feature_names"] rf = RandomForestRegressor(n_estimators=20, max_depth=4) scores = [] for i in range(X.shape[1]): score = cross_val_score(rf, X[:, i:i+1], Y, scoring="r2", cv=ShuffleSplit(len(X), 3, .3)) scores.append((round(np.mean(score), 3), names[i])) res = sorted(scores, reverse=True) for i in res: print i
特征操做或归一化包括在每个源特征上的简单变换。这些变换可能使得咱们假设类的近似偏差或估计偏差更低或者可以获得一个更快的算法。
与特征选择的问题相似,特征操做与归一化充满了“玄学”,它须要咱们具体问题具体分析,这里没有绝对好或绝对坏的变换,而是每个特征变换与在这些特征矢量上的学习算法,以及这个问题相关的先验假设密切相关。
接下来,咱们用表示在 m 个训练样本上的特征 f,一样,咱们用
表示全部样本特征的经验均值。
经过变换,这个变换使得特征有 0 均值。
这个变换使得每个特征的范围都是【0,1】,
固然,很容易将范围变换为【0,b】或【-b,b】
这个变换使得全部特征有 0 均值和 1 方差。形式上,令表示特征的经验方差,那么设置
这个变换裁剪特征的高值或低值
这个变换在特征上用到了sigmoid函数,例如,这里 b 是用户自定义参数。这个变换能够认为是一种软版本的裁剪变换。它对接近于 0 的值值有一些做用,而且与远离 0 的裁剪变换很类似。
这个变换是,这里 b 是用户自定义参数。这个变换普遍地用于当特征是计数型特征的状况下。例如,假定特征表示在一个文档中某个词出现的次数。那么,某个词出现一次与没有出现的区别,要比一个词出现1000次仍是1001次更为重要。
简单来讲,对数变换对值较小时的变化更敏感,值越大,敏感度越低。从本质上看,和标准化和归一化的思想很相似。
Relevant Link:
https://www.cnblogs.com/hhh5460/p/5186226.html