机器学习分类模型评价指标详述

问题建模 机器学习解决问题的通用流程:问题建模——特征工程——模型选择——模型融合 其中问题建模主要包括:设定评估指标,选择样本,交叉验证 解决一个机器学习问题都是从问题建模开始,首先需要收集问题的资料,深入理解问题,然后将问题抽象成机器可预测的问题。在这个过程中要明确业务指标和模型预测目标,根据预测目标选择适当指标用于模型评估。接着从原始数据中选择最相关的样本子集用于模型训练,并对样本子集划分训
相关文章
相关标签/搜索