为何可逆矩阵又叫“非奇异矩阵(non-singular matrix)”?

最近在捡回以前的线性代数知识,在复习可逆矩阵的时候,发现有的书上把可逆矩阵又称为非奇异矩阵,乍一看名字彻底不知所云,仔细一分析,仍是不明白。要想弄明白,仍是得从英文入手,下面的解释主要从这里得来的Why are invertible matrices called 'non-singular'?web

先把原回答搬过来:dom

If you take an n×n matrix "at random" (you have to make this very precise, but it can be done sensibly), then it will almost certainly be invertible. That is, the generic case is that of an invertible matrix, the special case is that of a matrix that is not invertible.this

For example, a 1×1 matrix (with real coefficients) is invertible if and only if it is not the 0 matrix; for 2×2 matrices, it is invertible if and only if the two rows do not lie in the same line through the origin; for 3×3, if and only if the three rows do not lie in the same plane through the origin; etc.spa

So here, "singular" is not being taken in the sense of "single", but rather in the sense of "special", "not common". See the dictionary definition: it includes "odd", "exceptional", "unusual", "peculiar".three

The noninvertible case is the "special", "uncommon" case for matrices. It is also "singular" in the sense of being the "troublesome" case (you probably know by now that when you are working with matrices, the invertible case is usually the easy one).ci

主要说了个什么事呢,意思就是假设随机生成一个\(n×n\)的矩阵,绝大多数状况这个矩阵都是可逆的,也能够理解为它的行列式不为0。换句话说,不可逆的状况是少见的,因此不可逆矩阵就称为Singular matrix,这里的singular就是special, not common的意思啊。同理,可逆矩阵很常见,因此就是非奇异矩阵了。get

举个例子就更好明白了,现假设一个\(1×1\)的矩阵,咱们知道只有这个矩阵等于0的时候才是不可逆的,其他状况都是可逆的;再看\(2×2\)的矩阵,这个能够理解成是一个平面上的两条线,只要当这两条线位于通过零点的同一条线上,那么这个矩阵才是不可逆的,显然这种状况是特殊的;\(3×3\)矩阵同理不加赘述。it



MARSGGBO原创




2018-11-28

相关文章
相关标签/搜索