机器学习性能指标精确率、召回率、F1值、ROC、PRC与AUC

  精确率、召回率、F1、AUC和ROC曲线都是评价模型好坏的指标,那么它们之间有什么不同,又有什么联系呢。下面让我们分别来看一下这几个指标分别是什么意思。 针对一个二分类问题,将实例分成正类(postive)或者负类(negative)。但是实际中分类时,会出现四种情况. (1)若一个实例是正类并且被预测为正类,即为真正类(True Postive TP) (2)若一个实例是正类,但是被预测成为
相关文章
相关标签/搜索