JavaShuo
栏目
标签
论文品读:Learning both Weights and Connections for Efficient Neural Networks
时间 2020-12-23
标签
模型压缩
深度学习
神经网络
繁體版
原文
原文链接
https://arxiv.org/abs/1506.02626v3 这是一篇关于模型压缩的15年文章,到目前为止(18年11月)有450的被引 文章介绍了一种参数剪枝(weights pruning)方法,应该算是最基础的一种方法了,直接按照参数是否大于某个阈值来判断哪些参数是重要的,哪些参数是不重要。 在不降低精度的前提下,在VGG-16上取得了13倍的参数压缩率,从138M个参数到10.8M
>>阅读原文<<
相关文章
1.
【Learning both Weights and Connections for Efficient Neural Networks】论文笔记
2.
《Learning both Weights and Connections for Efficient Neural Networks》论文笔记
3.
论文《Learning both Weights and Connections for Efficient Neural Network》阅读笔记
4.
网络模型剪枝-论文阅读《Learning both Weights and Connections for Efficient Neural Networks》
5.
【论文阅读】韩松《Efficient Methods And Hardware For Deep Learning》节选《Learning both Weights and Connections 》
6.
深度网络推理加速(Learning both Weights and Connections for Efficient Neural Networks)
7.
论文阅读——Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
8.
Neural Networks and Deep Learning-引论
9.
论文笔记系列-Simple And Efficient Architecture Search For Neural Networks
10.
Neural Networks and Deep Learning -- Class 3: Shallow neural networks
更多相关文章...
•
Web 品质- 可读性
-
网站品质教程
•
C# 文本文件的读写
-
C#教程
•
RxJava操作符(七)Conditional and Boolean
•
JDK13 GA发布:5大特性解读
相关标签/搜索
networks
efficient
connections
neural
weights
learning
论文阅读
论文解读
CV论文阅读
论文
网站品质教程
Thymeleaf 教程
PHP教程
文件系统
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
升级Gradle后报错Gradle‘s dependency cache may be corrupt (this sometimes occurs
2.
Smarter, Not Harder
3.
mac-2019-react-native 本地环境搭建(xcode-11.1和android studio3.5.2中Genymotion2.12.1 和VirtualBox-5.2.34 )
4.
查看文件中关键字前后几行的内容
5.
XXE萌新进阶全攻略
6.
Installation failed due to: ‘Connection refused: connect‘安卓studio端口占用
7.
zabbix5.0通过agent监控winserve12
8.
IT行业UI前景、潜力如何?
9.
Mac Swig 3.0.12 安装
10.
Windows上FreeRDP-WebConnect是一个开源HTML5代理,它提供对使用RDP的任何Windows服务器和工作站的Web访问
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
【Learning both Weights and Connections for Efficient Neural Networks】论文笔记
2.
《Learning both Weights and Connections for Efficient Neural Networks》论文笔记
3.
论文《Learning both Weights and Connections for Efficient Neural Network》阅读笔记
4.
网络模型剪枝-论文阅读《Learning both Weights and Connections for Efficient Neural Networks》
5.
【论文阅读】韩松《Efficient Methods And Hardware For Deep Learning》节选《Learning both Weights and Connections 》
6.
深度网络推理加速(Learning both Weights and Connections for Efficient Neural Networks)
7.
论文阅读——Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
8.
Neural Networks and Deep Learning-引论
9.
论文笔记系列-Simple And Efficient Architecture Search For Neural Networks
10.
Neural Networks and Deep Learning -- Class 3: Shallow neural networks
>>更多相关文章<<