JavaShuo
栏目
标签
《Learning both Weights and Connections for Efficient Neural Networks》论文笔记
时间 2020-12-23
标签
model compression
繁體版
原文
原文链接
1. 论文思想 深度神经网络在计算与存储上都是密集的,这就妨碍了其在嵌入式设备上的运用。为了解决该问题,便需要对模型进行剪枝。在本文中按照网络量级的排序,使得通过只学习重要的网络连接在不影响精度的情况下减少存储与计算量。论文中的方法分为三步:首先,使用常规方法训练模型;使用剪枝策略进行模型修剪;在修剪模型的基础上进行finetune。经过试验证明改文章提出的方法使得AlexNet的大小减小了9倍,
>>阅读原文<<
相关文章
1.
【Learning both Weights and Connections for Efficient Neural Networks】论文笔记
2.
论文品读:Learning both Weights and Connections for Efficient Neural Networks
3.
论文《Learning both Weights and Connections for Efficient Neural Network》阅读笔记
4.
网络模型剪枝-论文阅读《Learning both Weights and Connections for Efficient Neural Networks》
5.
【论文阅读】韩松《Efficient Methods And Hardware For Deep Learning》节选《Learning both Weights and Connections 》
6.
深度网络推理加速(Learning both Weights and Connections for Efficient Neural Networks)
7.
论文笔记系列-Simple And Efficient Architecture Search For Neural Networks
8.
Learning Convolutional Neural Networks for Graphs论文笔记
9.
【Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff】论文笔记
10.
【论文阅读笔记】Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
更多相关文章...
•
ASP.NET Razor - 标记
-
ASP.NET 教程
•
Scala for循环
-
Scala教程
•
Tomcat学习笔记(史上最全tomcat学习笔记)
•
RxJava操作符(七)Conditional and Boolean
相关标签/搜索
论文笔记
networks
efficient
connections
neural
weights
learning
论文
论文阅读笔记
文笔
MyBatis教程
PHP教程
MySQL教程
文件系统
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
部署Hadoop(3.3.0)伪分布式集群
2.
从0开始搭建hadoop伪分布式集群(三:Zookeeper)
3.
centos7 vmware 搭建集群
4.
jsp的page指令
5.
Sql Server 2008R2 安装教程
6.
python:模块导入import问题总结
7.
Java控制修饰符,子类与父类,组合重载覆盖等问题
8.
(实测)Discuz修改论坛最后发表的帖子的链接为静态地址
9.
java参数传递时,究竟传递的是什么
10.
Linux---文件查看(4)
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
【Learning both Weights and Connections for Efficient Neural Networks】论文笔记
2.
论文品读:Learning both Weights and Connections for Efficient Neural Networks
3.
论文《Learning both Weights and Connections for Efficient Neural Network》阅读笔记
4.
网络模型剪枝-论文阅读《Learning both Weights and Connections for Efficient Neural Networks》
5.
【论文阅读】韩松《Efficient Methods And Hardware For Deep Learning》节选《Learning both Weights and Connections 》
6.
深度网络推理加速(Learning both Weights and Connections for Efficient Neural Networks)
7.
论文笔记系列-Simple And Efficient Architecture Search For Neural Networks
8.
Learning Convolutional Neural Networks for Graphs论文笔记
9.
【Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff】论文笔记
10.
【论文阅读笔记】Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
>>更多相关文章<<