JavaShuo
栏目
标签
【Learning both Weights and Connections for Efficient Neural Networks】论文笔记
时间 2020-12-23
原文
原文链接
追随Song Han大神的第一篇网络压缩论文(NIPS’15),论文链接:https://arxiv.org/abs/1506.02626 这篇论文只是简单介绍了裁剪的思路,并没有涉及到网络加速。 效果: 作者用了4个网络实验 Lenet-300-100, pruning reduces the number of weights by 12× Lenet-5, pruning reduces t
>>阅读原文<<
相关文章
1.
《Learning both Weights and Connections for Efficient Neural Networks》论文笔记
2.
论文品读:Learning both Weights and Connections for Efficient Neural Networks
3.
论文《Learning both Weights and Connections for Efficient Neural Network》阅读笔记
4.
网络模型剪枝-论文阅读《Learning both Weights and Connections for Efficient Neural Networks》
5.
【论文阅读】韩松《Efficient Methods And Hardware For Deep Learning》节选《Learning both Weights and Connections 》
6.
深度网络推理加速(Learning both Weights and Connections for Efficient Neural Networks)
7.
论文笔记系列-Simple And Efficient Architecture Search For Neural Networks
8.
Learning Convolutional Neural Networks for Graphs论文笔记
9.
【Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff】论文笔记
10.
【论文阅读笔记】Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
更多相关文章...
•
ASP.NET Razor - 标记
-
ASP.NET 教程
•
Scala for循环
-
Scala教程
•
Tomcat学习笔记(史上最全tomcat学习笔记)
•
RxJava操作符(七)Conditional and Boolean
相关标签/搜索
论文笔记
networks
efficient
connections
neural
weights
learning
论文
论文阅读笔记
文笔
MyBatis教程
PHP教程
MySQL教程
文件系统
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
字节跳动21届秋招运营两轮面试经验分享
2.
Java 3 年,25K 多吗?
3.
mysql安装部署
4.
web前端开发中父链和子链方式实现通信
5.
3.1.6 spark体系之分布式计算-scala编程-scala中trait特性
6.
dataframe2
7.
ThinkFree在线
8.
在线画图
9.
devtools热部署
10.
编译和链接
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
《Learning both Weights and Connections for Efficient Neural Networks》论文笔记
2.
论文品读:Learning both Weights and Connections for Efficient Neural Networks
3.
论文《Learning both Weights and Connections for Efficient Neural Network》阅读笔记
4.
网络模型剪枝-论文阅读《Learning both Weights and Connections for Efficient Neural Networks》
5.
【论文阅读】韩松《Efficient Methods And Hardware For Deep Learning》节选《Learning both Weights and Connections 》
6.
深度网络推理加速(Learning both Weights and Connections for Efficient Neural Networks)
7.
论文笔记系列-Simple And Efficient Architecture Search For Neural Networks
8.
Learning Convolutional Neural Networks for Graphs论文笔记
9.
【Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff】论文笔记
10.
【论文阅读笔记】Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
>>更多相关文章<<