主成分分析法的原理

 什么是PCA?   在数据挖掘或者图像处理等领域经常会用到主成分分析,这样做的好处是使要分析的数据的维度降低了,但是数据的主要信息还能保留下来,并且,这些变换后的维两两不相关!至于为什么?那就接着往下看。在本文中,将会很详细的解答这些问题:PCA、SVD、特征值、奇异值、特征向量这些关键词是怎么联系到一起的?又是如何在一个矩阵上体现出来?它们如何决定着一个矩阵的性质?能不能用一种直观又容易理解的
相关文章
相关标签/搜索