奇异值分解(SVD)

以下内容来自刘建平Pinard-博客园的学习笔记,总结如下: 奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的。 1. 回顾特征值和特征向量 首
相关文章
相关标签/搜索