从离散到分布,盘点常见的文本表示方法

自然语言处理(NLP)的一些常见任务有:文本分类、指代消歧、自动摘要、机器翻译、主题识别等。传统的处理方法是基于规则的,现在更倾向于使用机器学习或深度学习的方法解决。那么如何在计算机中表达一段文本/一个词的意思呢?第一步必然是将这些语言特征转化为量化的表达方式。本篇文章总结一下NLP中常用的文本特征表示方式,并提供实际案例和代码实现,用于解决文本分类问题。 1. 离散表示(Discrete Rep
相关文章
相关标签/搜索