各种机器学习分类模型的优缺点

KNN: 依赖数据,无数学模型可言。适用于可容易解释的模型。 对异常值敏感,容易受到数据不平衡的影响。 Bayesian: 基于条件概率, 适用于不同维度之间相关性较小的时候,比较容易解释。也适合增量训练,不必要再重算一遍。应用:垃圾邮件处理。 Decision Tree: 此模型更容易理解不同属性对于结果的影响程度(如在第几层)。可以同时处理不同类型的数据。但因为追踪结果只需要改变叶子节点的属性
相关文章
相关标签/搜索