机器学习降维算法六——ISOMAP(等距特征映射)

流形学习:传统的机器学习方法中,数据点和数据点之间的距离和映射函数都是定义在欧式空间中的,然而在实际情况中,这些数据点可能不是分布在欧式空间中的,因此传统欧式空间的度量难以用于真实世界的非线性数据,从而需要对数据的分布引入新的假设。流形学习假设所处理的数据点分布在嵌入于外维欧式空间的一个潜在的流形体上,或者说这些数据点可以构成这样一个潜在的流形体。 图1 一个嵌在三维空间的流行体 图1就是一个数据
相关文章
相关标签/搜索