常用的相似度计算方法----欧式距离、曼哈顿距离、马氏距离、余弦、汉明距离、切比雪夫距离、闵可夫斯基距离、马氏距离

在深度学习以及图像搜索中,经常要对特征值进行比对,得到特征的相似度,常见的特征值比对方法有汉明距离、余弦距离、欧式距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、马氏距离等,下面对各种比对方法分别进行介绍。 目录 1汉明距离 2余弦相似度 3欧式距离 4曼哈顿距离 5切比雪夫距离 6闵可夫斯基距离 7马氏距离 1汉明距离 汉明距离/Hamming Distance也能用来计算两个向量的相似度;即通
相关文章
相关标签/搜索