机器学习部分:距离的度量(欧氏距离,曼哈顿距离,夹角余弦距离,切比雪夫距离,汉明距离,闵可夫斯基距离,马氏距离)

在数据挖掘中,我们经常需要计算样本之间的相似度(Similarity ),我们通常的做法是计算样本之间的距离,本文对距离计算方法做以下总结。 距离计算方法   1.欧式距离EuclideanDistance 欧式距离:也称欧几里得距离,在一个N维度的空间里,求两个点的距离,这个距离肯定是一个大于等于零的数字,那么这个距离需要用两个点在各自维度上的坐标相减,平方后加和再开方。   (1)二维平面上两
相关文章
相关标签/搜索