Unsupervised learning无监督学习

Unsupervised learning allows us to approach problems with little or no idea what our results should look like. We can derive structure from data where we don't necessarily know the effect of the variables.算法

We can derive this structure by clustering the data based on relationships among the variables in the data.app

With unsupervised learning there is no feedback based on the prediction results.ide

Example:学习

Clustering: Take a collection of 1,000,000 different genes, and find a way to automatically group these genes into groups that are somehow similar or related by different variables, such as lifespan, location, roles, and so on.this

Non-clustering: The "Cocktail Party Algorithm", allows you to find structure in a chaotic environment. (i.e. identifying individual voices and music from a mesh of sounds at a cocktail party).idea

 

无监督学习容许咱们在不知道结果的状况下去解决问题。咱们能够从那些变量对结果影响不大的数据中导出结构spa

咱们能够经过数据之间的变量关系来对数据进行聚类,从而推导出这种结构ip

无监督学习对于预测结果没有反馈get

ex:it

聚类:收集1000000中不一样的基因集合,而后找到一种方法将这些基因自动分组成类似或者相关的不一样变量组,如寿命、位置、角色等

非聚类:鸡尾酒宴会算法,容许在混乱的环境中查找结构(从嘈杂的鸡尾酒宴会上分辨出讲话的声音和音乐的声音)

相关文章
相关标签/搜索