不懂hive中的explain,说明hive还没入门,学会explain,可以给咱们工做中使用hive带来极大的便利!sql
本节将介绍 explain 的用法及参数介绍
HIVE提供了EXPLAIN命令来展现一个查询的执行计划,这个执行计划对于咱们了解底层原理,hive 调优,排查数据倾斜等颇有帮助 express
使用语法以下:apache
EXPLAIN [EXTENDED|CBO|AST|DEPENDENCY|AUTHORIZATION|LOCKS|VECTORIZATION|ANALYZE] query
explain 后面能够跟如下可选参数,注意:这几个可选参数不是 hive 每一个版本都支持的函数
在 hive cli 中输入如下命令(hive 2.3.7):oop
explain select sum(id) from test1;
获得结果(请逐行看完,即便看不懂也要每行都看):性能
STAGE DEPENDENCIES: Stage-1 is a root stage Stage-0 depends on stages: Stage-1 STAGE PLANS: Stage: Stage-1 Map Reduce Map Operator Tree: TableScan alias: test1 Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: id (type: int) outputColumnNames: id Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE Group By Operator aggregations: sum(id) mode: hash outputColumnNames: _col0 Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE Reduce Output Operator sort order: Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE value expressions: _col0 (type: bigint) Reduce Operator Tree: Group By Operator aggregations: sum(VALUE._col0) mode: mergepartial outputColumnNames: _col0 Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE File Output Operator compressed: false Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE table: input format: org.apache.hadoop.mapred.SequenceFileInputFormat output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Stage: Stage-0 Fetch Operator limit: -1 Processor Tree: ListSink
看完以上内容有什么感觉,是否是感受都看不懂,不要着急,下面将会详细讲解每一个参数,相信你学完下面的内容以后再看 explain 的查询结果将游刃有余。优化
一个HIVE查询被转换为一个由一个或多个stage组成的序列(有向无环图DAG)。这些stage能够是MapReduce stage,也能够是负责元数据存储的stage,也能够是负责文件系统的操做(好比移动和重命名)的stage。
咱们将上述结果拆分看,先从最外层开始,包含两个大的部分:code
先看第一部分 stage dependencies ,包含两个 stage,Stage-1 是根stage,说明这是开始的stage,Stage-0 依赖 Stage-1,Stage-1执行完成后执行Stage-0。orm
再看第二部分 stage plan,里面有一个 Map Reduce,一个MR的执行计划分为两个部分:排序
这两个执行计划树里面包含这条sql语句的 operator:
map端第一个操做确定是加载表,因此就是 TableScan 表扫描操做,常见的属性:
Select Operator: 选取操做,常见的属性 :
Group By Operator:分组聚合操做,常见的属性:
Reduce Output Operator:输出到reduce操做,常见属性:
Filter Operator:过滤操做,常见的属性:
Map Join Operator:join 操做,常见的属性:
File Output Operator:文件输出操做,常见的属性
Fetch Operator 客户端获取数据操做,常见的属性:
好,学到这里再翻到上面 explain 的查询结果,是否是感受基本都能看懂了。
本节介绍 explain 可以为咱们在生产实践中带来哪些便利及解决咱们哪些迷惑
如今,咱们在hive cli 输入如下查询计划语句
select a.id,b.user_name from test1 a join test2 b on a.id=b.id;
问:上面这条 join 语句会过滤 id 为 null 的值吗
执行下面语句:
explain select a.id,b.user_name from test1 a join test2 b on a.id=b.id;
咱们来看结果 (为了适应页面展现,仅截取了部分输出信息):
TableScan alias: a Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: id is not null (type: boolean) Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: id (type: int) outputColumnNames: _col0 Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE HashTable Sink Operator keys: 0 _col0 (type: int) 1 _col0 (type: int) ...
从上述结果能够看到 predicate: id is not null 这样一行,**说明 join 时会自动过滤掉关联字段为 null
值的状况,但 left join 或 full join 是不会自动过滤的**,你们能够自行尝试下。
看下面这条sql
select id,max(user_name) from test1 group by id;
问:group by 分组语句会进行排序吗
直接来看 explain 以后结果 (为了适应页面展现,仅截取了部分输出信息)
TableScan alias: test1 Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: id (type: int), user_name (type: string) outputColumnNames: id, user_name Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE Group By Operator aggregations: max(user_name) keys: id (type: int) mode: hash outputColumnNames: _col0, _col1 Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE Reduce Output Operator key expressions: _col0 (type: int) sort order: + Map-reduce partition columns: _col0 (type: int) Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE value expressions: _col1 (type: string) ...
咱们看 Group By Operator,里面有 keys: id (type: int) 说明按照 id 进行分组的,再往下看还有 sort order: + ,说明是按照 id 字段进行正序排序的。
观察两条sql语句
SELECT a.id, b.user_name FROM test1 a JOIN test2 b ON a.id = b.id WHERE a.id > 2;
SELECT a.id, b.user_name FROM (SELECT * FROM test1 WHERE id > 2) a JOIN test2 b ON a.id = b.id;
这两条sql语句输出的结果是同样的,可是哪条sql执行效率高呢
有人说第一条sql执行效率高,由于第二条sql有子查询,子查询会影响性能
有人说第二条sql执行效率高,由于先过滤以后,在进行join时的条数减小了,因此执行效率就高了
到底哪条sql效率高呢,咱们直接在sql语句前面加上 explain,看下执行计划不就知道了嘛
在第一条sql语句前加上 explain,获得以下结果
hive (default)> explain select a.id,b.user_name from test1 a join test2 b on a.id=b.id where a.id >2; OK Explain STAGE DEPENDENCIES: Stage-4 is a root stage Stage-3 depends on stages: Stage-4 Stage-0 depends on stages: Stage-3 STAGE PLANS: Stage: Stage-4 Map Reduce Local Work Alias -> Map Local Tables: $hdt$_0:a Fetch Operator limit: -1 Alias -> Map Local Operator Tree: $hdt$_0:a TableScan alias: a Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: (id > 2) (type: boolean) Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: id (type: int) outputColumnNames: _col0 Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE HashTable Sink Operator keys: 0 _col0 (type: int) 1 _col0 (type: int) Stage: Stage-3 Map Reduce Map Operator Tree: TableScan alias: b Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: (id > 2) (type: boolean) Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: id (type: int), user_name (type: string) outputColumnNames: _col0, _col1 Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE Map Join Operator condition map: Inner Join 0 to 1 keys: 0 _col0 (type: int) 1 _col0 (type: int) outputColumnNames: _col0, _col2 Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: _col0 (type: int), _col2 (type: string) outputColumnNames: _col0, _col1 Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE File Output Operator compressed: false Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE table: input format: org.apache.hadoop.mapred.SequenceFileInputFormat output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Local Work: Map Reduce Local Work Stage: Stage-0 Fetch Operator limit: -1 Processor Tree: ListSink
在第二条sql语句前加上 explain,获得以下结果
hive (default)> explain select a.id,b.user_name from(select * from test1 where id>2 ) a join test2 b on a.id=b.id; OK Explain STAGE DEPENDENCIES: Stage-4 is a root stage Stage-3 depends on stages: Stage-4 Stage-0 depends on stages: Stage-3 STAGE PLANS: Stage: Stage-4 Map Reduce Local Work Alias -> Map Local Tables: $hdt$_0:test1 Fetch Operator limit: -1 Alias -> Map Local Operator Tree: $hdt$_0:test1 TableScan alias: test1 Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: (id > 2) (type: boolean) Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: id (type: int) outputColumnNames: _col0 Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE HashTable Sink Operator keys: 0 _col0 (type: int) 1 _col0 (type: int) Stage: Stage-3 Map Reduce Map Operator Tree: TableScan alias: b Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: (id > 2) (type: boolean) Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: id (type: int), user_name (type: string) outputColumnNames: _col0, _col1 Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE Map Join Operator condition map: Inner Join 0 to 1 keys: 0 _col0 (type: int) 1 _col0 (type: int) outputColumnNames: _col0, _col2 Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: _col0 (type: int), _col2 (type: string) outputColumnNames: _col0, _col1 Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE File Output Operator compressed: false Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE table: input format: org.apache.hadoop.mapred.SequenceFileInputFormat output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Local Work: Map Reduce Local Work Stage: Stage-0 Fetch Operator limit: -1 Processor Tree: ListSink
你们有什么发现,除了表别名不同,其余的执行计划彻底同样,都是先进行 where 条件过滤,在进行 join 条件关联。说明 hive 底层会自动帮咱们进行优化,因此这两条sql语句执行效率是同样的。
以上仅列举了3个咱们生产中既熟悉又有点迷糊的例子,explain 还有不少其余的用途,如查看stage的依赖状况、排查数据倾斜、hive 调优等,小伙伴们能够自行尝试。