1. 首先咱们须要找到数据,不少地方提供了api,好比:python
https://www.wunderground.com/weather/api(可是这个网站不提供空气质量)json
空气质量可参考:https://www.zhihu.com/question/20939327api
2. 从api获取数据,使用python,代码粘出来:app
# -*- coding: UTF-8 -*- import urllib2 import json from datetime import datetime import pandas as pd '''' 最终选择的特征有:气温tempm, 露点dewptm, 湿度humidity, 风力wspdm, 能见度vism, 气压pressurei, 降水precipm 其中,tempm:min max mean, dewptm:min max mean, humidity:humidity, wspdm: min max, vism: mean min max, pressurei: max min mean, precipm:precipm 目标:fog(雾霾) ''' def getdata(month,day,meant,meand,humi,maxw,meanv,meanp,preci,fo): date = datetime(2017, month, day) print day target = 'http://api.wunderground.com/api/{Your Key}/history_{}/q/CN/zmw:00000.1.54511.json?v=wuiapp' f = urllib2.urlopen(target.format(date.strftime('%Y%m%d'))) json_string = f.read() parsed_json = json.loads(json_string) day = parsed_json['history']['dailysummary'] temp = day[0]['meantempm'] #气温状况 dewptm = day[0]['meandewptm'] # 露点状况 hum = day[0]['humidity'] # 湿度状况 wspdm = day[0]['maxwspdm'] # 风力状况 vism = day[0]['meanvism'] # 能见度状况 press = day[0]['meanpressurei'] # 气压状况 prec = day[0]['precipm'] # 降水状况 fog = day[0]['fog'] #雾霾状况 meant.append(temp) meand.append(dewptm) humi.append(hum) maxw.append(wspdm) meanv.append(vism) meanp.append(press) preci.append(prec) fo.append(fog) f.close() if __name__ == '__main__': meantempm = [] meandewptm = [] humidity = [] maxwspdm = [] meanvism = [] meanpressurei = [] precipm = [] f = [] for day in range(1,31): getdata(4, day, meantempm, meandewptm, humidity, maxwspdm, meanvism, meanpressurei, precipm, f) print meantempm #head = [u'温度',u'露点',u'湿度',u'风力',u'能见度',u'气压',u'降水',u'雾霾'] value = [meantempm, meandewptm, humidity, maxwspdm, meanvism, meanpressurei, precipm, f] value = list(zip(*value)) dataframe = pd.DataFrame(value) dataframe.to_csv('/Users/purixingtei/Downloads/output-2.csv', index=False, encoding="utf-8")
其中的Your Key须要被替换成本身的app key,而后主函数的循环,须要根据本身的月-日进行选择。函数
特别注意一点就是:不要起csv.py的名!!!网站
(loading)ui